Applications of Caputo-Type Fractional Derivatives for Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation
Abstract
:1. Introduction
2. Initial Coefficient Estimates and the Fekete–Szegö Inequality for
3. Initial Coefficient Estimates and the Fekete–Szegö Inequality for
4. Initial Coefficient Estimates and the Fekete–Szegö Inequality for
5. Corollaries and Consequences
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Pinchuk, B. Functions of bounded boundary rotation. Isr. J. Math. 1971, 10, 6–16. [Google Scholar] [CrossRef]
- Noonan, J.W. Asymptotic behavior of functions with bounded boundary rotation. Trans. Am. Math. Soc 1972, 164, 397–410. [Google Scholar] [CrossRef]
- Padmanabhan, K.S.; Parvatham, R. Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 1975, 31, 311–323. [Google Scholar] [CrossRef]
- Bulboacă, T. Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions. Miskolc Math. Notes 2016, 17, 739–748. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der mathematischen Wissenschaften 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis; Academic Press, Inc.: London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications (Kuwait, 1985); KFAS Proc. Ser. 3; Pergamon: Oxford, UK, 1985; pp. 53–60. [Google Scholar]
- Al-Hawary, T. Sufficient conditions for analytic functions defined by Frasin differential operator. Stud. Univ. Babeş-Bolyai Math. 2021, 66, 353–359. [Google Scholar] [CrossRef]
- Jothibasu, J. Certain subclasses of bi-univalent functions defined by Sălăgean operator. Electron. J. Math. Anal. Appl. 2015, 3, 150–157. [Google Scholar]
- Olatunji, S.O.; Ajai, P.T. On subclasses of bi-univalent functions of Bazilevic type involving linear and Salagean operator. Int. J. Pure Appl. Math. 2014, 92, 645–656. [Google Scholar] [CrossRef]
- Shaba, T.G. On some new subclass of bi-univalent functions associated with Opoola differential operator. Open J. Math. Anal. 2020, 4, 74–79. [Google Scholar] [CrossRef]
- Shaba, T.G. Certain new subclasses of analytic and bi-univalent functions using salagean operator. Asia Pac. J. Math. 2020, 7, 29. [Google Scholar]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Jpn. 1984, 29, 383–389. [Google Scholar]
- Salagean, G.S. Subclasses of univalent functions. Lect. Notes Math. 1983, 1013, 362–372. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Salah, J.; Darus, M.A. subclass of uniformly convex functions associated with a fractional calculus operator involving Caputo’s fractional differentiation. Acta Univ. Apulensis 2010, 24, 295–304. [Google Scholar]
- Vijaya, K.; Murugusundaramoorthy, G.; Breaz, D.; Oros, G.I.; El-Deeb, S.M. Ozaki-type bi-close-to-convex and bi-concave functions involving a modified Caputo’s fractional operator linked with a three-leaf function. Fractal. Fract. 2024, 8, 220. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T. Certain class of bi-Bazilevic functions with bounded boundary rotation involving Salagean operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
- Sharma, P.; Sivasubramanian, S.; Cho, N.E. Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Math. 2023, 8, 29535–29554. [Google Scholar] [CrossRef]
- Sharma, P.; Alharbi, A.; Sivasubramanian, S.; El-Deeb, S.M. On Ozaki close-to-convex functions with bounded boundary rotation. Symmetry 2024, 16, 839. [Google Scholar] [CrossRef]
- Tang, H.; Magesh, N.; Balaji, V.K.; Abirami, C. Coefficient inequalities for a comprehensive class of bi-univalent functions related with bounded boundary variation. J. Inequal. Appl. 2019, 2019, 237. [Google Scholar] [CrossRef]
- Li, Y.; Vijaya, K.; Murugusundaramoorthy, G.; Tang, H. On new subclasses of bi-starlike functions with bounded boundary rotation. AIMS Math. 2020, 5, 3346–3356. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Thilagavathi, K. Coefficient estimate of bi-univalent functions involving Caputo fractional calculus operator. Southeast Asian Bull. Math. 2014, 38, 433–444. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsager, K.M.; Murugusundaramoorthy, G.; Catas, A.; El-Deeb, S.M. Applications of Caputo-Type Fractional Derivatives for Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation. Fractal Fract. 2024, 8, 501. https://doi.org/10.3390/fractalfract8090501
Alsager KM, Murugusundaramoorthy G, Catas A, El-Deeb SM. Applications of Caputo-Type Fractional Derivatives for Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation. Fractal and Fractional. 2024; 8(9):501. https://doi.org/10.3390/fractalfract8090501
Chicago/Turabian StyleAlsager, Kholood M., Gangadharan Murugusundaramoorthy, Adriana Catas, and Sheza M. El-Deeb. 2024. "Applications of Caputo-Type Fractional Derivatives for Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation" Fractal and Fractional 8, no. 9: 501. https://doi.org/10.3390/fractalfract8090501
APA StyleAlsager, K. M., Murugusundaramoorthy, G., Catas, A., & El-Deeb, S. M. (2024). Applications of Caputo-Type Fractional Derivatives for Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation. Fractal and Fractional, 8(9), 501. https://doi.org/10.3390/fractalfract8090501