Ozaki-Type Bi-Close-to-Convex and Bi-Concave Functions Involving a Modified Caputo’s Fractional Operator Linked with a Three-Leaf Function
Abstract
:1. Introduction and Preliminaries
Modified Caputo’s Fractional Operator
2. Ozaki-Type Bi-Close-to-Convex Function
Fekete-Szegö Problem
3. A New Class of Bi-Concave Functions
- with
- maps conformally onto a set whose complement with respect to is convex;
- The opening angle of at ∞ is less than or equal to
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babeś-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Brannan, D.A.; Clunie, J.G. (Eds.) Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Tang, H.; Deng, G.-T.; Li, S.-H. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Bulboacă, T. The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2022, 116, 145. [Google Scholar] [CrossRef]
- Vijaya, K.; Murugusundaramoorthy, G. Bi-starlike function of complex order involving Mathieu-type series associated with telephone Numbers. Symmetry 2023, 15, 638. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K.; Bulboacă, T. Initial coefficient bounds for bi-univalent functions related to Gregory coefficients. Mathematics 2023, 11, 2857. [Google Scholar] [CrossRef]
- Sen, M. Introduction to Fractional-Order Operators and Their Engineering Applications; University of Notre Dame: Notre Dame, IN, USA, 2014. [Google Scholar]
- Machado, J.A.T.; Galhano, A.M.S.F.; Alexandra, M.S.F.; Trujillo, J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98, 577–582. [Google Scholar] [CrossRef]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; 360p, ISBN 9780582219779. [Google Scholar]
- Mendes, R.V. Introduction to Fractional Calculus (based on Lectures by R. Gorenfo, F. Mainardi and I. Podlubny). 2008. Available online: https://label2.tecnico.ulisboa.pt/vilela/Cursos/Frac_calcul.pdf (accessed on 1 January 2024).
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Diferential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Nonnenmacher, T.F.; Metzler, R. Applications of fractional calculus ideas to biology. In Applications of Fractional Calculus in Physics; Hilfer., R., Ed.; University of Stuttgart: Stuttgart, Germany, 1998. [Google Scholar]
- Owa, S. Some properties of fractional calculus operators for certain analytic functions. In Proceedings of the International Symposium on New Development of Geometric Function Theory and its Applications (GFTA2008), Bangi, Malaysia, 10–13 November 2008; pp. 214–221. [Google Scholar]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Jpn. 1984, 29, 383–389. [Google Scholar]
- Sălăgean, G.S. Subclasses of univalent functions. Lect. Notes Math. 1983, 1013, 362–372. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Amer. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent, Part II. J. Roy. Astr. Soc. 1967, 13, 529. [Google Scholar] [CrossRef]
- Salah, J.; Darus, M. A subclass of uniformly convex functions associated with a fractional calculus operator involving Caputo’s fractional differentiation. Acta Univ. Apulensis Math. Inform. 2010, 24, 295–304. [Google Scholar]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Radius problemsfor starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass ofstrongly starlike functions associated with exponential functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functionsassociated with cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Sokół, J. Radius problem in the class SL*. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar]
- Raina, R.K.; Sokól, J. On Coefficient estimates for acertain class of starlike functions. Hacettepe. J. Math. Statist. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Gandhi, S. Radius estimates for three leaf functionsand convex combination of starlike functions. In Mathematical Analysis 1: Approximation Theory ICRAPAM; Springer Proceedings in Mathematics & Statistics, Volume 306; Deo, N., Gupta, V., Acu, A., Agrawal, P., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Kaplan, W. Close-to-convex schlicht functions. Michigan Math. J. 1952, 1, 169–186. [Google Scholar] [CrossRef]
- Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku Sect. A 1935, 2, 167–188. [Google Scholar]
- Kargar, R.; Ebadian, A. Ozaki’s conditions for general integral operator. Sahand Commun. Math. Anal. 2017, 5, 61–67. [Google Scholar]
- Ozaki, S. On the theory of multivalent functions II. Sci. Rep. Tokyo Bunrika Daigaku Sect. A 1941, 4, 45–87. [Google Scholar]
- Allu, V.; Thomas, D.K.; Tuneski, N. On Ozaki close-toconvex functions. Bull. Aust. Math. Soc. 2019, 99, 89–100. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Zaprawa, P. On the Fekete-Szego problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 1–192. [Google Scholar] [CrossRef]
- Bayram, H.; Altinkaya, S. General Properties of Concave Functions Defined by the Generalized Srivastava-Attiya Operator. J. Comput. Anal. Appl. 2017, 23, 408–416. [Google Scholar]
- Cruz, L.; Pommerenke, C. On Concave Univalent Functions. Complex Var. Elliptic Equ. 2007, 52, 153–159. [Google Scholar] [CrossRef]
- Bhowmik, B.; Ponnusamy, S.; Wirths, K.J. Characterization and the pre-Schwarzian norm estimate for concave univalent functions. Monatsh Math. 2010, 161, 59–75. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. General Properties of Multivalent Concave Functions Involving Linear Operator of Carlson-Shaffer Type. C. R. Acad. Bulg. Sci. 2016, 69, 1533–1540. [Google Scholar]
- Avkhadiev, F.G.; Pommerenke, C.; Wirths, K.-J. Sharp inequalities for the coefficient of concave schlicht functions. Comment. Math. Helv. 2006, 81, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Avkhadiev, F.G.; Wirths, K.-J. Concave schlicht functions with bounded opening angle at inonity. Lobachevskii J. Math. 2005, 17, 3–10. [Google Scholar]
- Rosy, T.; Sumil Varma, S.; Murugusundaramoorthy, G. Fekete-Szego problem for concave univalent functions associated with Fox-Wright’s, generalized hypergeometric functions. Facta Univ. Ser. Math. Inf. 2015, 30, 465–477. [Google Scholar]
- Altinkaya, S. Bi-concave functions defined by Al-Oboudi differential operator. Iran. J. Math. Sci. Inform. 2022, 17, 207–217. [Google Scholar] [CrossRef]
- Sakar, F.M.; Guney, O.H. Coefficient estimates for bi-concave functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 53–60. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboacă, T. Initial Coefficients and Fekete-Szegő inequalities for functions related to Van der Pol Numbers (VPN). Math. Slovaca 2023, 73, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function theory of Complex Analysis. Iran J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijaya, K.; Murugusundaramoorthy, G.; Breaz, D.; Oros, G.I.; El-Deeb, S.M. Ozaki-Type Bi-Close-to-Convex and Bi-Concave Functions Involving a Modified Caputo’s Fractional Operator Linked with a Three-Leaf Function. Fractal Fract. 2024, 8, 220. https://doi.org/10.3390/fractalfract8040220
Vijaya K, Murugusundaramoorthy G, Breaz D, Oros GI, El-Deeb SM. Ozaki-Type Bi-Close-to-Convex and Bi-Concave Functions Involving a Modified Caputo’s Fractional Operator Linked with a Three-Leaf Function. Fractal and Fractional. 2024; 8(4):220. https://doi.org/10.3390/fractalfract8040220
Chicago/Turabian StyleVijaya, Kaliappan, Gangadharan Murugusundaramoorthy, Daniel Breaz, Georgia Irina Oros, and Sheza M. El-Deeb. 2024. "Ozaki-Type Bi-Close-to-Convex and Bi-Concave Functions Involving a Modified Caputo’s Fractional Operator Linked with a Three-Leaf Function" Fractal and Fractional 8, no. 4: 220. https://doi.org/10.3390/fractalfract8040220
APA StyleVijaya, K., Murugusundaramoorthy, G., Breaz, D., Oros, G. I., & El-Deeb, S. M. (2024). Ozaki-Type Bi-Close-to-Convex and Bi-Concave Functions Involving a Modified Caputo’s Fractional Operator Linked with a Three-Leaf Function. Fractal and Fractional, 8(4), 220. https://doi.org/10.3390/fractalfract8040220