Extensions of Bicomplex Hypergeometric Functions and Riemann–Liouville Fractional Calculus in Bicomplex Numbers
Abstract
:1. Introduction
2. Preliminaries
2.1. The Bicomplex Numbers
- Addition and multiplication of bicomplex numbers
- Zero divisors
- Idempotent representation
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- Bicomplex derivative and integral representations
- Bicomplex holomorphic function
2.2. Special Functions
- The integral form of the bicomplex gamma function is denoted by (see [10])
2.3. Riemann–Liouville Fractional Operator
3. -Bicomplex Hypergeometric Function
- and
- Now, allow us to say that
- and
- Therefor,
- The proof is now complete. □
4. -Bicomplex Riemann–Liouville Fractional Operator
5. Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segre, C. Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
- Alpay, D.; Elena, M.; Shapiro, M.; Struppa, D.C. Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis; Springer Briefs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Elena, M.; Shapiro, M.; Struppa, D.C.; Vajiac, A. Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kumar, J. On Some Properties of Bicomplex Numbers. J. Emerg. Technol. Innov. Res. 2018, 5, 475–499. [Google Scholar]
- Price, G.B. An Introduction to Multicomplex Spaces and Functions; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Rönn, S. Bicomplex Algebra and Function Theory. arXiv 2001, arXiv:math/0101200. [Google Scholar]
- Luna-Elizarraras, M.E.; Shapiro, M.; Struppa, D.C.; Vajiac, A. Bicomplex numbers and their elementary functions. Cubo (Temuco) 2012, 14, 61–80. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Bell, W.W. Special Functions for Scientists and Engineers; Courier Corporation: North Chelmsford, MA, USA, 2004. [Google Scholar]
- Goyal, S.P.; Mathur, T.; Goyal, R. Bicomplex Gamma and Beta Function. J Rajasthan Acad Phy. 2006, 5, 131–142. [Google Scholar]
- Diaz, R.; Pariguan, E. On Hypergeometric Functions and Pochhammer k-Symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Zayed, M.; Bakhet, A.; Fathi, M.; Saleem, M.A. On the k-Bicomplex Gamma and k-Bicomplex Beta Functions and their Properties. J. Math. 2024; in revision. [Google Scholar]
- Karlsson, P.W. Hypergeometric Functions with Integral Parameter Differences. J. Math. Phys. 1971, 12, 270–271. [Google Scholar] [CrossRef]
- Diaz, R.; Ortiz, C.; Pariguan, E. On the k-Gamma q-Distribution. Cent. Eur. J. Math. 2010, 8, 448–458. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. An Integral Representation of Some k-Hypergeometric Functions. Int. Math. Forum. 2012, 7, 478–494. [Google Scholar]
- Rahman, G.; Nisar, K.S.; Mubeen, S. On Generalized k-Fractional Derivative Operator. AIMS Math. 2020, 5, 1936–1945. [Google Scholar] [CrossRef]
- Coloma, N.; Teodoro, A.D.; Doa-Toca Dchi, F. Ponce Fractional Elementary Bicomplex Functions in the Riemann–Liouville Sense. Adv. Appl. Clifford Algebr. 2021, 31, 31–63. [Google Scholar] [CrossRef]
- Rochon, D.; Shapiro, M. On Algebraic Properties of Bicomplex and Hyperbolic Numbers. Anal. Univ. Oradea Fasc. Math. 2004, 11, 71–110. [Google Scholar]
- Goswami, M.P.; Kumar, R. Riemann–Liouville Fractional Operators of Bicomplex Order and Their Properties. Math. Methods Appl. Sci. 2022, 45, 5699–5720. [Google Scholar] [CrossRef]
- Meena, R.; Bhabor, A.K. Bicomplex Hypergeometric Function and Its Properties. Integral Transform. Spec. Funct. 2023, 34, 478–494. [Google Scholar] [CrossRef]
- Wang, W. Some Properties of k-Gamma and k-Beta Functions. ITM Web Conf. 2016, 7, 07003. [Google Scholar] [CrossRef]
- Lebedev, N. Special Functions and Their Applications; Dover: New York, NY, USA, 1972. [Google Scholar]
- Andrews, L.C.; Young, C.Y. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Mittal, E.; Joshi, S.; Suthar, D.L. Some Results on k-Hypergeometric Function. TWMS J. Appl. Eng. Math. 2022, 12, 1480–1489. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; p. 204. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-Fractional Integrals and Applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Romero, L.G.; Luque, L.L.; Dorrego, G.A.; Cerutti, R.A. On the k-Riemann-Liouville Fractional Derivative. Int. J. Contemp. Math. Sci. 2013, 8, 41–51. [Google Scholar] [CrossRef]
- Mittal, E.; Joshi, S. Note on a k-Generalised Fractional Derivative. Discrete Contin. Dyn. Syst. Ser. S 2020, 13, 797–804. [Google Scholar]
- Goswami, M.P.; Kumar, R. Generalization of Riemann-Liouville Fractional Operators in Bicomplex Space and Applications. Math. Stat. 2023, 11, 802–815. [Google Scholar] [CrossRef]
- Johnston, W.; Makdad, C.M. A Comparison of Norms: Bicomplex Root and Ratio Tests and an Extension Theorem. Am. Math. Mon. 2021, 128, 525–533. [Google Scholar] [CrossRef]
- Laxmi, P.; Jain, S.; Agarwal, P. Study of Generalized k-Hypergeometric Functions. Comput. Sci. 2021, 16, 379–388. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhet, A.; Fathi, M.; Zakarya, M.; AlNemer, G.; Saleem, M.A. Extensions of Bicomplex Hypergeometric Functions and Riemann–Liouville Fractional Calculus in Bicomplex Numbers. Fractal Fract. 2024, 8, 508. https://doi.org/10.3390/fractalfract8090508
Bakhet A, Fathi M, Zakarya M, AlNemer G, Saleem MA. Extensions of Bicomplex Hypergeometric Functions and Riemann–Liouville Fractional Calculus in Bicomplex Numbers. Fractal and Fractional. 2024; 8(9):508. https://doi.org/10.3390/fractalfract8090508
Chicago/Turabian StyleBakhet, Ahmed, Mohamed Fathi, Mohammed Zakarya, Ghada AlNemer, and Mohammed A. Saleem. 2024. "Extensions of Bicomplex Hypergeometric Functions and Riemann–Liouville Fractional Calculus in Bicomplex Numbers" Fractal and Fractional 8, no. 9: 508. https://doi.org/10.3390/fractalfract8090508
APA StyleBakhet, A., Fathi, M., Zakarya, M., AlNemer, G., & Saleem, M. A. (2024). Extensions of Bicomplex Hypergeometric Functions and Riemann–Liouville Fractional Calculus in Bicomplex Numbers. Fractal and Fractional, 8(9), 508. https://doi.org/10.3390/fractalfract8090508