Difference Approximation for 2D Time-Fractional Integro-Differential Equation with Given Initial and Boundary Conditions
Abstract
1. Introduction
2. The Numerical Scheme
3. Stability Analysis and Error Estimates
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurtin, M.E.; Pipkin, A.C. A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 1968, 31, 113–126. [Google Scholar] [CrossRef]
- Miller, R.K. An integro-differential equation for gird heat conductors with memory. J. Math. Anal. Appl. 1978, 66, 313–332. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Samet, B.; Gómez-Aguilar, J.F.; Osman, M.S. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals 2020, 141, 110321. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Osman, M.S.; Samet, B. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using genocchi polynomials. Numer. Methods Partial. Differ. Equ. 2021, 37, 1250–1268. [Google Scholar] [CrossRef]
- Güner, Ö.; Bekir, A. Exact solutions of some fractional differential equations arising in mathematical biology. Int. J. Biomath. 2015, 8, 1550003. [Google Scholar] [CrossRef]
- Oldham, K.B. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
- López-Marcos, J.C. A difference scheme for a nonliner partial integro-differential equation. SIAM J. Numer. Anal. 1990, 27, 20–31. [Google Scholar] [CrossRef]
- Tang, T. A finite difference sheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 1993, 11, 309–319. [Google Scholar] [CrossRef]
- Li, M.; Gu, X.-M.; Huang, C.; Fei, M.; Zhang, G. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 2018, 358, 256–282. [Google Scholar] [CrossRef]
- Wang, K. A two-gird method for finite element solution of parabolic integro-differential equations. J. Appl. Math. Comput. 2022, 68, 3473–3490. [Google Scholar] [CrossRef]
- Tan, Z.J.; Li, K.; Chen, Y.P. A fully discrete two-grid finite element method for nonlinear hyperbolic integro-differential equation. Appl. Math. Comput. 2022, 413, 126596. [Google Scholar] [CrossRef]
- Zhang, X.D.; Yao, L. Numerical approximation of time-dependent fractional convection-diffusion-wave equation by RBF-FD method. Eng. Anal. Bound. Elem. 2021, 130, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.D.; Feng, Y.L.; Luo, Z.Y.; Liu, J. A spatial sixth-order numerical scheme for solving fractional partial differential equation. Appl. Math. Lett. 2025, 159, 109265. [Google Scholar] [CrossRef]
- Cotta, R.M.; Mikhailov, M.D. Integral transform method. Appl. Math. Model. 1993, 17, 156–161. [Google Scholar] [CrossRef]
- Pinheiro, I.F.; Sphaier, L.A.; De B. Alves, L.S. Integral transform solution of integro-differential equations in conduction-radiation problems. Numer. Heat Transf. Part A Appl. 2018, 73, 94–114. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Singh, D.; Sultana, F.; Pandey, R.K.; Atangana, A. A comparative study of three numerical schemes for solving Atangana-Baleanu fractional integro-differential equation defined in Caputo sense. Eng. Comput. 2022, 38, 149–168. [Google Scholar] [CrossRef]
- Rawani, M.K.; Verma, A.K.; Cattani, C. A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 106986. [Google Scholar] [CrossRef]
- Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. Appl. Numer. Math. 2023, 183, 140–156. [Google Scholar] [CrossRef]
- Fakhar-Izadi, F. Fully spectral-galerkin method for the one-and two-dimensional fourth-order time-fractional partial integro-differential equations with a weakly singular kernel. Numer. Methods Partial. Differ. Equ. 2022, 38, 160–176. [Google Scholar] [CrossRef]
- Kamran, K.; Shah, Z.; Kumam, P.; Alreshidi, N.A. A meshless method based on the laplace transform for the 2D multi-term time fractional partial integro-differential equation. Mathematics 2020, 8, 1972. [Google Scholar] [CrossRef]
- Qiao, L.J.; Wang, Z.B.; Xu, D. An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 2020, 151, 199–212. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M. Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives. J. Comput. Appl. Math. 2019, 356, 314–328. [Google Scholar] [CrossRef]
- Qiao, L.J.; Xu, D.; Wang, Z.B. An ADI difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel. Appl. Math. Comput. 2019, 354, 103–114. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Li, H.; Fang, Z.C. Second-order time stepping scheme combined with a mixed element method for a 2D nonlinear fourth-order fractional integro-differential equations. Fractal Fract. 2022, 6, 201. [Google Scholar] [CrossRef]
- Huang, Q.; Qiao, L.J.; Tang, B. High-order orthogonal spline collocation ADI scheme for a new complex two-dimensional distributed-order fractional integro-differential equation with two weakly singular kernels. Int. J. Comput. Math. 2023, 100, 703–721. [Google Scholar] [CrossRef]
- Wang, Z.B.; Cen, D.; Mo, Y. Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels. Appl. Numer. Math. 2021, 159, 190–203. [Google Scholar] [CrossRef]
- Wang, Z.B.; Liang, Y.X.; Mo, Y. A novel high order compact ADI scheme for two dimensional fractional integro-differential equations. Appl. Numer. Math. 2021, 167, 257–272. [Google Scholar] [CrossRef]
- Gu, X.-M.; Wu, S.L. A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel. J. Comput. Phys. 2020, 417, 109576. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Elsevier: New York, NY, USA, 1999. [Google Scholar]
- Liao, H.-L.; Liu, N.; Lyu, T. Discrete gradient structure of a second-order variable-step method for nonlinear integro-differential models. SIAM J. Numer. Anal. 2023, 61, 2157–2181. [Google Scholar] [CrossRef]
- Chen, H.B.; Xu, D. A Compact difference scheme for an evolution equation with a weakly singular kernel. Numer. Math.-Theory Methods Appl. 2012, 5, 559–572. [Google Scholar]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–77. [Google Scholar] [CrossRef]
- Tian, W.Y.; Zhou, H.; Deng, W.H. A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 2015, 84, 1703–1727. [Google Scholar] [CrossRef]
- Gao, G.H.; Sun, H.W.; Sun, Z.Z. Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 2015, 298, 337–359. [Google Scholar] [CrossRef]
- Hao, Z.P.; Sun, Z.Z.; Cao, W.R. A three-level linearized compact difference scheme for the Ginzburg-Landau equation. Numer. Methods Partial. Differ. Equ. 2015, 31, 876–899. [Google Scholar] [CrossRef]
- Liao, H.L.; Sun, Z.Z. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial. Differ. Equ. 2010, 26, 37–60. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional adams method. Numer. Algorithms 2004, 36, 31–52. [Google Scholar] [CrossRef]
- Guo, J.; Xu, D.; Qiu, W.L. A finite difference scheme for the nonlinear time-fractional partial integro-differential equation. Math. Methods Appl. Sci. 2020, 43, 3392–3412. [Google Scholar] [CrossRef]
- Qiao, L.J.; Xu, D. Compact alternating direction implicit scheme for integro-differential equations of parabolic type. J. Sci. Comput. 2018, 76, 565–582. [Google Scholar] [CrossRef]
- Wang, Z.B.; Vong, S.K. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Physics 2014, 277, 1–15. [Google Scholar] [CrossRef]
- Mohebbi, A. Compact finite difference scheme for the solution for a time faractional partial integro-differential equation with a weakly singular kernel. Math. Methods Appl. Sci. 2017, 40, 7627–7639. [Google Scholar] [CrossRef]
- Sloan, I.H.; Thomée, V. Time discretization of an integro-differential equation of parabolic type. SIAM J. Numer. Anal. 1986, 23, 1052–1061. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Springer: New York, NY, USA, 1993. [Google Scholar]
- Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Operational matrices based on hybrid functions for solving general nonlinear two-dimensional fractional integro-differential equations. Comput. Appl. Math. 2020, 39, 1–34. [Google Scholar] [CrossRef]
- Stynes, M.; O’Riordan, E.; Gracia, J.L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef]
- Farrell, P.; Hegarty, A.; Miller, J.M.; O’Riordan, E.; Shishkin, G.I. Robust Computational Techniques for Boundary Layers; Appl. Math. 16; Chapman & Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
N | = 0.2 | = 0.5 | = 0.8 | |||
---|---|---|---|---|---|---|
70 | 9.1433 × 10−10 | – | 8.1616 × 10−10 | – | 6.6074 × 10 | – |
80 | 7.0624 × 10−10 | 1.93 | 6.2979 × 10−10 | 1.94 | 5.0900 × 10 | 1.95 |
90 | 5.6170 × 10 | 1.94 | 5.0017 × 10 | 1.96 | 4.0318 × 10 | 1.98 |
100 | 4.5715 × 10 | 1.96 | 4.0631 × 10 | 1.97 | 3.2638 × 10 | 2.01 |
N | = 0.2 | = 0.5 | = 0.8 | |||
---|---|---|---|---|---|---|
50 | 2.0804 × 10 | – | 1.8721 × 10 | – | 1.5490 × 10 | – |
60 | 1.4484 × 10 | 1.99 | 1.3016 × 10 | 1.99 | 1.0744 × 10 | 2.01 |
70 | 1.0651 × 10 | 1.99 | 9.5551 × 10 | 2.01 | 7.8626 × 10 | 2.03 |
80 | 8.1516 × 10 | 2.00 | 7.2984 × 10 | 2.02 | 5.9828 × 10 | 2.05 |
N | = 0.2 | = 0.5 | = 0.8 | |||
---|---|---|---|---|---|---|
10 | 4.3329 × 10 | – | 3.8059 × 10 | – | 2.9837 × 10 | – |
20 | 1.0931 × 10 | 1.99 | 9.5612 × 10 | 1.99 | 7.4416 × 10 | 2.00 |
30 | 4.8663 × 10 | 2.00 | 4.2472 × 10 | 2.00 | 3.2920 × 10 | 2.01 |
40 | 2.7359 × 10 | 2.00 | 2.3829 × 10 | 2.01 | 1.8394 × 10 | 2.02 |
M | = 0.2 | = 0.5 | = 0.8 | |||
---|---|---|---|---|---|---|
12 | 1.6977 × 10 | – | 1.6792 × 10 | – | 1.6534 × 10 | – |
16 | 5.4909 × 10 | 3.92 | 5.4417 × 10 | 3.92 | 5.3726 × 10 | 3.91 |
20 | 2.2737 × 10 | 3.95 | 2.2499 × 10 | 3.96 | 2.2164 × 10 | 3.97 |
24 | 1.0913 × 10 | 4.03 | 1.0808 × 10 | 4.02 | 1.0660 × 10 | 4.02 |
M | = 0.2 | = 0.5 | = 0.8 | |||
---|---|---|---|---|---|---|
12 | 1.6913 × 10 | – | 1.6700 × 10 | – | 1.6405 × 10 | – |
16 | 5.4740 × 10 | 3.92 | 5.4172 × 10 | 3.91 | 5.3382 × 10 | 3.90 |
20 | 2.2657 × 10 | 3.96 | 2.2384 × 10 | 3.96 | 2.2002 × 10 | 3.97 |
24 | 1.0879 × 10 | 4.02 | 1.0759 × 10 | 4.02 | 1.0589 × 10 | 4.01 |
M | = 0.2 | = 0.5 | = 0.8 | |||
---|---|---|---|---|---|---|
12 | 1.6856 × 10 | – | 1.6617 × 10 | – | 1.6287 × 10 | – |
16 | 5.4588 × 10 | 3.92 | 5.3952 × 10 | 3.91 | 5.3069 × 10 | 3.90 |
20 | 2.2583 × 10 | 3.96 | 2.2276 × 10 | 3.96 | 2.1849 × 10 | 3.98 |
24 | 1.0847 × 10 | 4.02 | 1.0712 × 10 | 4.02 | 1.0523 × 10 | 4.01 |
N | = 0.1 | = 0.5 | = 0.9 | |||
---|---|---|---|---|---|---|
130 | 7.9699 × 10 | – | 3.2922 × 10 | – | 7.1783 × 10 | – |
140 | 6.9555 × 10 | 1.84 | 2.8754 × 10 | 1.83 | 6.2756 × 10 | 1.81 |
150 | 6.0783 × 10 | 2.00 | 2.5147 × 10 | 1.95 | 5.4930 × 10 | 1.93 |
160 | 5.3123 × 10 | 2.01 | 2.1993 × 10 | 2.01 | 4.8079 × 10 | 2.06 |
N | = 0.1 | = 0.5 | = 0.9 | |||
---|---|---|---|---|---|---|
140 | 8.7400 × 10 | – | 4.8492 × 10 | – | 1.0980 × 10 | – |
150 | 7.7033 × 10 | 1.83 | 4.2813 × 10 | 1.81 | 9.7004 × 10 | 1.80 |
160 | 6.7865 × 10 | 1.96 | 3.7777 × 10 | 1.94 | 8.5644 × 10 | 1.93 |
170 | 5.9694 × 10 | 2.11 | 3.3277 × 10 | 2.09 | 7.5481 × 10 | 2.08 |
N | = 0.1 | = 0.5 | = 0.9 | |||
---|---|---|---|---|---|---|
150 | 1.3776 × 10 | – | 6.9117 × 10 | – | 1.5866 × 10 | – |
160 | 1.2261 × 10 | 1.81 | 6.1698 × 10 | 1.80 | 1.4272 × 10 | 2.02 |
170 | 1.0889 × 10 | 1.96 | 5.4946 × 10 | 1.91 | 1.2628 × 10 | 2.02 |
180 | 9.6385 × 10 | 2.13 | 4.8762 × 10 | 2.08 | 1.1212 × 10 | 2.03 |
M | = 0.1 | = 0.5 | = 0.9 | |||
---|---|---|---|---|---|---|
4 | 3.4174 × 10 | – | 1.7859 × 10 | – | 4.5051 × 10 | – |
8 | 2.0959 × 10 | 4.03 | 1.0955 × 10 | 4.03 | 2.7635 × 10 | 4.03 |
16 | 1.2991 × 10 | 4.01 | 6.7905 × 10 | 4.01 | 1.7130 × 10 | 4.01 |
32 | 7.6333 × 10 | 4.08 | 3.9099 × 10 | 4.08 | 1.0065 × 10 | 4.08 |
M | = 0.1 | = 0.5 | = 0.9 | |||
---|---|---|---|---|---|---|
4 | 6.2105 × 10 | – | 5.9446 × 10 | – | 1.4047 × 10 | – |
8 | 3.8108 × 10 | 4.02 | 3.6463 × 10 | 4.03 | 8.6159 × 10 | 4.03 |
16 | 2.3622 × 10 | 4.01 | 2.2602 × 10 | 4.01 | 5.3406 × 10 | 4.01 |
32 | 1.3880 × 10 | 4.08 | 1.3280 × 10 | 4.08 | 3.1380 × 10 | 4.08 |
M | = 0.1 | = 0.5 | = 0.9 | |||
---|---|---|---|---|---|---|
4 | 1.5936 × 10 | – | 9.8327 × 10 | – | 2.3640 × 10 | – |
8 | 9.7745 × 10 | 4.03 | 6.0304 × 10 | 4.03 | 1.4498 × 10 | 4.03 |
16 | 6.0587 × 10 | 4.01 | 3.7379 × 10 | 4.01 | 8.9865 × 10 | 4.01 |
32 | 3.5599 × 10 | 4.08 | 2.1963 × 10 | 4.08 | 5.2802 × 10 | 4.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Luo, Z.; Tang, Q.; Wei, L.; Liu, J. Difference Approximation for 2D Time-Fractional Integro-Differential Equation with Given Initial and Boundary Conditions. Fractal Fract. 2024, 8, 495. https://doi.org/10.3390/fractalfract8080495
Zhang X, Luo Z, Tang Q, Wei L, Liu J. Difference Approximation for 2D Time-Fractional Integro-Differential Equation with Given Initial and Boundary Conditions. Fractal and Fractional. 2024; 8(8):495. https://doi.org/10.3390/fractalfract8080495
Chicago/Turabian StyleZhang, Xindong, Ziyang Luo, Quan Tang, Leilei Wei, and Juan Liu. 2024. "Difference Approximation for 2D Time-Fractional Integro-Differential Equation with Given Initial and Boundary Conditions" Fractal and Fractional 8, no. 8: 495. https://doi.org/10.3390/fractalfract8080495
APA StyleZhang, X., Luo, Z., Tang, Q., Wei, L., & Liu, J. (2024). Difference Approximation for 2D Time-Fractional Integro-Differential Equation with Given Initial and Boundary Conditions. Fractal and Fractional, 8(8), 495. https://doi.org/10.3390/fractalfract8080495