Next Article in Journal
Application of Fractional-Order Multi-Wing Chaotic System to Weak Signal Detection
Previous Article in Journal
Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System
Previous Article in Special Issue
High-Frequency Fractional Predictions and Spatial Distribution of the Magnetic Loss in a Grain-Oriented Magnetic Steel Lamination
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System

1
Department of Mathematics, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia
2
Department of Mathematics, College of Science, Qassim University, Buraydah 52571, Saudi Arabia
3
Department of General Studies, University of Prince Mugrin (UPM), Madinah 42311, Saudi Arabia
4
School of Engineering, Monash University, Selangor 47500, Malaysia
5
Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina 42351, Saudi Arabia
6
Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2024, 8(7), 416; https://doi.org/10.3390/fractalfract8070416
Submission received: 11 June 2024 / Revised: 30 June 2024 / Accepted: 9 July 2024 / Published: 15 July 2024

Abstract

:
This manuscript investigates the existence, uniqueness, and different forms of Ulam stability for a system of three coupled differential equations involving the Riemann–Liouville (RL) fractional operator. The Leray–Schauder alternative is employed to confirm the existence of solutions, while the Banach contraction principle is used to establish their uniqueness. Stability conditions are derived utilizing classical nonlinear functional analysis techniques. Theoretical findings are illustrated with an example. The proposed system generalizes third-order ordinary differential equations (ODEs) with different boundary conditions (BCs).

1. Introduction

Fractional differential equations (FDEs) have become essential tools for modeling real-world phenomena. These equations are particularly effective in capturing the memory and hereditary properties of various materials and processes, making them indispensable in several fields. Numerous fundamental phenomena in diverse areas such as physics and polymer technology [1], fitting of experimental data [2], blood flow [3], biology [4], capacitor theory [5], fluid mechanics [6], aerodynamics [7], viscoelasticity [8], thermodynamics [9], control theory [10], electrodynamics [11], electrochemistry [12], electrical circuits [13], etc., are well described by the aforementioned equations.
In recent times, there has been significant focus on investigating the existence and uniqueness of solutions to FDEs, considering a wide range of BCs, such as Dirichlet [14], nonlocal [15], integral [16], periodic [17], anti-periodic [18], and multi-point [19]. Many researchers have studied fractional differential systems due to their extensive applications in modeling diverse physical and engineering phenomena, including diffusion and reactions [20], chaos theory [21], fluid dynamics [22], heat equations [23], and Burgers equations [24]. For more details about applications, refer to [25].
The study of stability in functional and differential equations has become a key area in mathematical analysis. The literature covers various types of stability, including exponential [26] and Lyapunov [27] stability. A notable type is Ulam–Hyers (UH) stability, which links exact and numerical solutions. Ulam introduced this problem in 1940 [28], and Hyers provided a partial solution for linear functional equations in the following year using Banach spaces [29]. In 1978, Rassias extended these results to linear mappings [30]. Rassias’s work has inspired many researchers to extend his results to ODEs and FDEs, such as functional equations in several variables [31], linear differential equations of the first order [32], advection-reaction diffusion system [33], biology and economics [34], impulsive switched coupled evolution equations [35].
In recent years, the existence theory and various forms of Ulam stability for coupled systems of FDEs with two equations have garnered significant attention, particularly with different fractional order operators. Examples include coupled systems utilizing the Caputo operator [36], RL operator [37], Hadamard-type operator [38], Atangana–Baleanu fractional derivative [39], Langevin equations using the Caputo operator [40], coupled p-Laplacian systems of FDEs [41], generalized Hilfer derivatives [42], sequential FDEs [43], Riesz–Caputo operator [44], and ψ -Caputo operator [45], among others.
Based on the literature on the existence and stability of FDEs, it is evident that there currently exists no similar model involving a system of three or tripled FDEs, as will be studied in this article. Furthermore, this system represents a generalization of third-order ODEs and includes various boundary conditions. Motivated by the above discussion, this manuscript aims to examine the existence, uniqueness, and stability, including UH and generalized UH stability, of the following three FDEs systems incorporating the RL operators:
D g u ( t ) = f 1 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , D h w ( t ) = f 2 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , D l y ( t ) = f 3 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , D g 3 u ( 0 ) = σ 0 D g 3 u ( T ) , D g 2 u ( 0 ) = ς 0 D g 2 u ( T ) , D g 1 u ( 0 ) = τ 0 D g 1 u ( T ) , D h 3 w ( 0 ) = σ 1 D h 3 w ( T ) , D h 2 w ( 0 ) = ς 1 D h 2 w ( T ) , D h 1 w ( 0 ) = τ 1 D h 1 w ( T ) , D l 3 y ( 0 ) = σ 2 D l 3 y ( T ) , D l 2 y ( 0 ) = ς 2 D l 2 y ( T ) , D l 1 y ( 0 ) = τ 2 D l 1 y ( T ) ,
where g , h , l ( 2 , 3 ] , J = [ 0 , T ] , T > 0 and σ , ς , τ 1 ( = 0 , 1 , 2 ) . The functions f i ( i = 1 , 2 , 3 ) : J × R 3 R are continuous and D g , D h , D l are RL fractional derivatives.
This manuscript addresses FDEs as described in Problem 1, which generalizes third-order ODEs. These ODEs have numerous applications in various fields of applied sciences, including fluid mechanics [46], physics and engineering [47], pseudospherical surfaces [48], resonance [49], biology [50], optimal control problems [51], and nuclear spin generators [52], among others. One prominent application of the third-order ODEs is the jerk-type equation, which is widely used in various fields, including economic systems, electrical engineering, chaos theory, and secure communication, [53]. Furthermore, for σ = ς = τ = 1 ( = 0 , 1 , 2 ) , we obtain anti-periodic BCs, which frequently arise in models of several physical processes, such as ordinary and partial differential equations, impulsive differential equations, anti-periodic wavelets [54], anti-periodic trigonometric polynomials [55], and shunting inhibitory cellular neural networks [56]. For more details, see [57].
This manuscript is organized as follows: Section 2 covers key preliminaries to prove the theoretical results. Section 3 focuses on demonstrating the existence and uniqueness of solutions to system (1). Section 4 outlines the necessary conditions for the Ulam stability of problem (1). An example illustrating the practical application of these results is provided in Section 5. The conclusion and special applications of the study are presented in Section 6.

2. Preliminaries

Foundational concepts and materials are presented in this section.
Consider C ( J ) as the Banach space with the norm specified as u = max t J | u ( t ) | . For t J , define u r ( t ) = t r u ( t ) for r 0 . Let S 1 = C r ( J ) be the space of all functions u such that u r S 1 , which becomes a Banach space when endowed with the norm u S 1 = max t J t r | u ( t ) | . Similarly, we can define Banach spaces S 2 and S 3 endowed with norms w S 2 = max t J t r | w ( t ) | and y S 3 = max t J t r | y ( t ) | , respectively. Likewise, the norm specified on the product space is ( u , w , y ) = u S 1 + w S 2 + y S 3 . Clearly, S = S 1 × S 2 × S 3 , ( u , w , y ) is a Banach space.
Definition 1
([58]). The RL integral of order g > 0 of a continuous function u ( R + , R ) is expressed as:
I g u ( t ) = 1 Γ ( g ) 0 t u ( ϱ ) ( t ϱ ) 1 g d ϱ ,
assuming the integral is well-defined.
Definition 2
([58]). The g > 0 order RL derivative of u ( R + , R ) , which is continuous, is given by:
D g u ( t ) = 1 Γ ( m g ) d d t m 0 t u ( ϱ ) ( t ϱ ) g m + 1 d ϱ ,
where m = [ g ] + 1 . We note that for φ > 1 , φ g 1 , g 2 , , g m , we have
D g t φ = Γ ( φ + 1 ) Γ ( φ g + 1 ) t φ g and D g t g i = 0 , i = 1 , 2 , , m .
Lemma 1
([58]). The unique solution of the differential equation D g u ( t ) = ϖ ( t ) is
I g D g u ( t ) = I g ϖ ( t ) + k 0 t g m + k 1 t g m 1 + + k m 2 t g 2 + k m 1 t g 1 ,
where m = [ g ] + 1 and k i R for i = 1 , 2 , , m .
Theorem 1
([59]). Consider an operator F : S S that is completely continuous. Define the set
B ( F ) = u S : u = λ F ( u ) , λ [ 0 , 1 ] .
Then either the operator F possesses at least one fixed point, or the set B ( F ) exhibits unboundedness.

3. Existence Theory

Lemma 2.
Given μ 0 C ( J ) and g ( 2 , 3 ] , the unique solution of FDE:
D g u ( t ) = μ 0 ( t ) ; t J , D g 3 u ( 0 ) = σ 0 D g 3 u ( T ) , D g 2 u ( 0 ) = ς 0 D g 2 u ( T ) , D g 1 u ( 0 ) = τ 0 D g 1 u ( T )
is expressed as
u ( t ) = 0 T G g ( t , ϱ ) μ 0 ( ϱ ) d ϱ ,
where
G g ( t , ϱ ) = t ϱ g 1 Γ ( g ) + σ 0 t g 3 T ϱ 2 2 ( 1 σ 0 ) Γ ( g 2 ) + ς 0 t g 3 t ( 1 σ 0 ) + σ 0 T ( g 2 ) T ϱ ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) + τ 0 t g 2 t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) + σ 0 τ 0 t g 3 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) ,   0 ϱ < t T , σ 0 t g 3 T ϱ 2 2 ( 1 σ 0 ) Γ ( g 2 ) + ς 0 t g 3 t ( 1 σ 0 ) + σ 0 T ( g 2 ) T ϱ ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) + τ 0 t g 2 t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) + σ 0 τ 0 t g 3 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) ,   0 t < ϱ T .
Proof. 
By Lemma 1, we have [59]:
u ( t ) = 1 Γ ( g ) 0 t ( t ϱ ) g 1 μ 0 ( ϱ ) d ϱ + k 2 t g 1 + k 1 t g 2 + k 0 t g 3 .
Using given boundary conditions on Equation (4), we will obtain
k 0 = σ 0 ( 1 σ 0 ) Γ ( g 2 ) [ 1 2 0 T ( T ϱ ) 2 μ 0 ( ϱ ) d ϱ + ς 0 T ( 1 ς 0 ) 0 T T ϱ μ 0 ( ϱ ) d ϱ + τ 0 T 2 2 ( 1 τ 0 ) + ς 0 τ 0 T 2 ( 1 ς 0 ) ( 1 τ 0 ) 0 T μ 0 ( ϱ ) d ϱ ] , k 1 = ς 0 ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ μ 0 ( ϱ ) d ϱ + τ 0 T ( 1 τ 0 ) 0 T μ 0 ( ϱ ) d ϱ , k 2 = τ 0 ( 1 τ 0 ) Γ ( g ) 0 T μ 0 ( ϱ ) d ϱ .
Put the values of k 0 , k 1 and k 2 in Equation (4), we obtain
u ( t ) = 1 Γ ( g ) 0 t t ϱ g 1 μ 0 ( ϱ ) d ϱ + σ 0 t g 3 2 ( 1 σ 0 ) Γ ( g 2 ) 0 T T ϱ 2 μ 0 ( ϱ ) d ϱ + ς 0 t g 3 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ μ 0 ( ϱ ) d ϱ + τ 0 t g 2 t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T μ 0 ( ϱ ) d ϱ + σ 0 τ 0 t g 3 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) 0 T μ 0 ( ϱ ) d ϱ = 0 T G g ( t , ϱ ) μ 0 ( ϱ ) d ϱ ,
where G g ( t , ϱ ) is provided in (3). □
Lemma 3.
Assume μ 1 C ( J ) and h ( 2 , 3 ] , the unique solution of FDE:
D h w ( t ) = μ 1 ( t ) ; t J , D h 3 w ( 0 ) = σ 1 D h 3 w ( T ) , D h 2 w ( 0 ) = ς 1 D h 2 w ( T ) , D h 1 w ( 0 ) = τ 1 D h 1 w ( T )
is represented by the integral formula:
w ( t ) = 0 T G h ( t , ϱ ) μ 1 ( ϱ ) d ϱ ,
where G h ( t , ϱ ) is:
G h ( t , ϱ ) = t ϱ h 1 Γ ( h ) + σ 1 t h 3 T ϱ 2 2 ( 1 σ 1 ) Γ ( h 2 ) + ς 1 t h 3 t ( 1 σ 1 ) + σ 1 T ( h 2 ) T ϱ ( 1 σ 1 ) ( 1 ς 1 ) Γ ( h 1 ) + τ 1 t h 2 t ( 1 ς 1 ) + ς 1 T ( h 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h ) + σ 1 τ 1 t h 3 T 2 1 + ς 1 2 ( 1 σ 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h 2 ) ,   0 ϱ < t T , σ 1 t h 3 T ϱ 2 2 ( 1 σ 1 ) Γ ( h 2 ) + ς 1 t h 3 t ( 1 σ 1 ) + σ 1 T ( h 2 ) T ϱ ( 1 σ 1 ) ( 1 ς 1 ) Γ ( h 1 ) + τ 1 t h 2 t ( 1 ς 1 ) + ς 1 T ( h 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h ) + σ 1 τ 1 t h 3 T 2 1 + ς 1 2 ( 1 σ 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h 2 ) ,   0 t < ϱ T .
Proof. 
The proof reflects the strategy used in Lemma 2. □
Lemma 4.
Assume μ 2 C ( J ) and l ( 2 , 3 ] , the unique solution of FDE:
D l w ( t ) = μ 2 ( t ) ; t J , D l 3 w ( 0 ) = σ 2 D l 3 w ( T ) , D l 2 w ( 0 ) = ς 2 D l 2 w ( T ) , D l 1 w ( 0 ) = τ 2 D l 1 w ( T )
is represented by the integral equation:
w ( t ) = 0 T G l ( t , ϱ ) μ 2 ( ϱ ) d ϱ ,
where G l ( t , ϱ ) is:
G l ( t , ϱ ) = t ϱ l 1 Γ ( l ) + σ 2 t l 3 T ϱ 2 2 ( 1 σ 2 ) Γ ( l 2 ) + ς 2 t l 3 t ( 1 σ 2 ) + σ 2 T ( l 2 ) T ϱ ( 1 σ 2 ) ( 1 ς 2 ) Γ ( l 1 ) + τ 2 t l 2 t ( 1 ς 2 ) + ς 2 T ( l 1 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l ) + σ 2 τ 2 t l 3 T 2 1 + ς 2 2 ( 1 σ 2 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l 2 ) ,   0 ϱ < t T , σ 2 t l 3 T ϱ 2 2 ( 1 σ 2 ) Γ ( l 2 ) + ς 2 t l 3 t ( 1 σ 2 ) + σ 2 T ( l 2 ) T ϱ ( 1 σ 2 ) ( 1 ς 2 ) Γ ( l 1 ) + τ 2 t l 2 t ( 1 ς 2 ) + ς 2 T ( l 1 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l ) + σ 2 τ 2 t l 3 T 2 1 + ς 2 2 ( 1 σ 2 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l 2 ) ,   0 t < ϱ T .
Proof. 
The proof reflects the strategy used in Lemma 2. □
For clarity and ease of understanding, the following notations are introduced:
C g = max { T 3 Γ ( g + 1 ) + | σ 0 T 3 6 ( 1 σ 0 ) Γ ( g 2 ) | + | ς 0 T 3 1 + | σ 0 | ( g 3 ) 2 ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | + | τ 0 T 3 1 + | ς 0 | ( g 2 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | + | σ 0 τ 0 T 3 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | } ,
C h = max { T 3 Γ ( h + 1 ) + | σ 1 T 3 6 ( 1 σ 1 ) Γ ( h 2 ) | + | ς 1 T 3 1 + | σ 1 | ( h 3 ) 2 ( 1 σ 1 ) ( 1 ς 1 ) Γ ( h 1 ) | + | τ 1 T 3 1 + | ς 1 | ( h 2 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h ) | + | σ 1 τ 1 T 3 1 + ς 1 2 ( 1 σ 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h 2 ) | } ,
C l = max { T 3 Γ ( l + 1 ) + | σ 2 T 3 6 ( 1 σ 2 ) Γ ( l 2 ) | + | ς 2 T 3 1 + | σ 2 | ( l 3 ) 2 ( 1 σ 2 ) ( 1 ς 2 ) Γ ( l 1 ) | + | τ 2 T 3 1 + | ς 2 | ( l 2 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l ) | + | σ 2 τ 2 T 3 1 + ς 2 2 ( 1 σ 2 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l 2 ) | }
and
C 0 = min 1 Q ψ , 1 Q θ , 1 Q Υ ,
where
Q ψ = C g ψ f 1 * + C h ψ f 2 * + C l ψ f 3 * , Q θ = C g θ f 1 * + C h θ f 2 * + C l θ f 3 * , Q Υ = C g Υ f 1 * + C h Υ f 2 * + C l Υ f 3 * .
Suppose u , w , y represent solutions to problem (1), and t J , then
u ( t ) = 1 Γ ( g ) 0 t t ϱ g 1 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 0 t g 3 2 ( 1 σ 0 ) Γ ( g 2 ) 0 T T ϱ 2 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + ς 0 t g 3 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + τ 0 t g 2 t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 0 τ 0 t g 3 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) 0 T f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ ,
w ( t ) = 1 Γ ( h ) 0 t t ϱ h 1 f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 1 t h 3 2 ( 1 σ 1 ) Γ ( h 2 ) 0 T T ϱ 2 f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + ς 1 t h 3 t ( 1 σ 1 ) + σ 1 T ( h 2 ) ( 1 σ 1 ) ( 1 ς 1 ) Γ ( h 1 ) 0 T T ϱ f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + τ 1 t h 2 t ( 1 ς 1 ) + ς 1 T ( h 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h ) 0 T f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 1 τ 1 t h 3 T 2 1 + ς 1 2 ( 1 σ 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h 2 ) 0 T f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ
and
y ( t ) = 1 Γ ( l ) 0 t t ϱ l 1 f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 2 t l 3 2 ( 1 σ 2 ) Γ ( l 2 ) 0 T T ϱ 2 f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + ς 2 t l 3 t ( 1 σ 2 ) + σ 2 T ( l 2 ) ( 1 σ 2 ) ( 1 ς 2 ) Γ ( l 1 ) 0 T T ϱ f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + τ 2 t l 2 t ( 1 ς 2 ) + ς 2 T ( l 1 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l ) 0 T f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 2 τ 2 t l 3 T 2 1 + ς 2 2 ( 1 σ 2 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l 2 ) 0 T f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ .
Now, to reformulate problem (1) as a fixed-point problem, introduce the operator F : S S defined as follows:
F ( u , w , y ) ( t ) = 0 T G g ( t , ϱ ) f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ 0 T G h ( t , ϱ ) f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ 0 T G l ( t , ϱ ) f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ = F g ( u , w , y ) ( t ) F h ( u , w , y ) ( t ) F l ( u , w , y ) ( t ) .
Then, the solution to problem (1) corresponds to the fixed point of F , where
F g ( u , w , y ) ( t ) = 1 Γ ( g ) 0 t t ϱ g 1 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 0 t g 3 2 ( 1 σ 0 ) Γ ( g 2 ) 0 T T ϱ 2 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + ς 0 t g 3 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + τ 0 t g 2 t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 0 τ 0 t g 3 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) 0 T f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ ,
F h ( u , w , y ) ( t ) = 1 Γ ( h ) 0 t t ϱ h 1 f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 1 t h 3 2 ( 1 σ 1 ) Γ ( h 2 ) 0 T T ϱ 2 f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + ς 1 t h 3 t ( 1 σ 1 ) + σ 1 T ( h 2 ) ( 1 σ 1 ) ( 1 ς 1 ) Γ ( h 1 ) 0 T T ϱ f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + τ 1 t h 2 t ( 1 ς 1 ) + ς 1 T ( h 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h ) 0 T f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 1 τ 1 t h 3 T 2 1 + ς 1 2 ( 1 σ 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h 2 ) 0 T f 2 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ
and
F l ( u , w , y ) ( t ) = 1 Γ ( l ) 0 t t ϱ l 1 f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 2 t l 3 2 ( 1 σ 2 ) Γ ( l 2 ) 0 T T ϱ 2 f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + ς 2 t l 3 t ( 1 σ 2 ) + σ 2 T ( l 2 ) ( 1 σ 2 ) ( 1 ς 2 ) Γ ( l 1 ) 0 T T ϱ f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + τ 2 t l 2 t ( 1 ς 2 ) + ς 2 T ( l 1 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l ) 0 T f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + σ 2 τ 2 t l 3 T 2 1 + ς 2 2 ( 1 σ 2 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l 2 ) 0 T f 3 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ
Incorporating the Leray–Schauder alternative theorem (1), the following theorem proves the existence of at least one solution to the given system (1).
Theorem 2.
Let Λ f i , ψ f i , θ f i , Υ f i ; ( i = 1 , 2 , 3 ) : J R + be functions, where for all u , w , y R , the following conditions hold:
| f i ( t , u ( t ) , w ( t ) , y ( t ) ) | Λ f i ( t ) + ψ f i ( t ) | u ( t ) | + θ f i ( t ) | w ( t ) | + Υ f i ( t ) | y ( t ) | ,
with sup t J Λ f i ( t ) = Λ f i * , sup t J ψ f i ( t ) = ψ f i * , sup t J θ f i ( t ) = θ f i * , sup t J Υ f i ( t ) = Υ f i * and Λ f 1 * , Λ f 2 * , Λ f 3 * > 0 .
  • In addition, it is supposed that Q ψ , Q θ , Q Υ < 1 . The system (1) under these conditions admits at least one solution.
Proof. 
To begin with, we establish the complete continuity of F : S S . Given the continuity of f i ( i = 1 , 2 , 3 ) , F also exhibits continuity. Let set B S be defined as bounded. Consequently, there exist constants N f i > 0 , implying that | f i ( t , u ( t ) , w ( t ) , y ( t ) ) | N f i ( i = 1 , 2 , 3 ) , ( u , w , y ) B . Consequently, for any ( u , w , y ) B , it follows that
t 3 g | F g ( u , w , y ) ( t ) | t 3 g [ 1 Γ ( g ) 0 t t ϱ g 1 d ϱ + | σ 0 2 ( 1 σ 0 ) Γ ( g 2 ) | 0 T T ϱ 2 d ϱ + | ς 0 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | 0 T T ϱ d ϱ + | τ 0 t t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | 0 T d ϱ + | σ 0 τ 0 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | 0 T d ϱ ] | f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) | , t 3 g N f 1 [ 1 Γ ( g ) 0 t t ϱ g 1 d ϱ + | σ 0 2 ( 1 σ 0 ) Γ ( g 2 ) | 0 T T ϱ 2 d ϱ + | ς 0 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | 0 T T ϱ d ϱ + | τ 0 t t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | 0 T d ϱ + | σ 0 τ 0 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | 0 T d ϱ ] ,
which implies that
F g ( u , w , y ) N f 1 C g .
Similarly, we obtain
F h ( u , w , y ) N f 2 C h
and
F l ( u , w , y ) N f 3 C l .
Hence, the inequalities (11), (12), and (13) collectively establish the uniform boundedness of F .
Following, the equicontinuity of F is demonstrated. Consider 0 t 2 t 1 T . Then we obtain
| t 1 3 g F g ( u , w , y ) ( t 1 ) t 2 3 g F g ( u , w , y ) ( t 2 ) | = | 1 Γ ( g ) 0 t 1 t 1 3 g ( t 1 ϱ ) g 1 t 2 3 g ( t 2 ϱ ) g 1 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ 1 Γ ( g ) t 1 t 2 t 2 3 g ( t 2 ϱ ) g 1 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + ς 0 ( t 1 t 2 ) ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ + τ 0 ( t 1 t 2 ) ( t 1 t 2 ) ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) d ϱ | .
So, we obtain
| t 1 3 g F g ( u , w , y ) ( t 1 ) t 2 3 g F g ( u , w , y ) ( t 2 ) | N f 1 ( | 1 Γ ( g ) 0 t 1 t 1 3 g ( t 1 ϱ ) g 1 t 2 3 g ( t 2 ϱ ) g 1 d ϱ 1 Γ ( g ) t 1 t 2 t 2 3 g ( t 2 ϱ ) g 1 d ϱ | + | ς 0 ( t 1 t 2 ) ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ d ϱ | + | τ 0 ( t 1 t 2 ) ( t 1 t 2 ) ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T d ϱ | ) 0 as t 1 t 2 .
Analogously, we can obtain
| t 1 3 h F h ( u , w , y ) ( t 1 ) t 2 3 h F h ( u , w , y ) ( t 2 ) | N f 2 ( | 1 Γ ( h ) 0 t 1 t 1 3 h ( t 1 ϱ ) h 1 t 2 3 h ( t 2 ϱ ) h 1 d ϱ 1 Γ ( h ) t 1 t 2 t 2 3 h ( t 2 ϱ ) h 1 d ϱ | + | ς 1 ( t 1 t 2 ) ( 1 σ 1 ) + σ 1 T ( h 2 ) ( 1 σ 1 ) ( 1 ς 1 ) Γ ( h 1 ) 0 T T ϱ d ϱ | + | τ 1 ( t 1 t 2 ) ( t 1 t 2 ) ( 1 ς 1 ) + ς 1 T ( h 1 ) ( 1 ς 1 ) ( 1 τ 1 ) Γ ( h ) 0 T d ϱ | ) 0 as t 1 t 2
and
| t 1 3 l F l ( u , w , y ) ( t 1 ) t 2 3 l F l ( u , w , y ) ( t 2 ) | N f 3 ( | 1 Γ ( l ) 0 t 1 t 1 3 l ( t 1 ϱ ) l 1 t 2 3 l ( t 2 ϱ ) l 1 d ϱ 1 Γ ( l ) t 1 t 2 t 2 3 l ( t 2 ϱ ) l 1 d ϱ | + | ς 2 ( t 1 t 2 ) ( 1 σ 2 ) + σ 2 T ( l 2 ) ( 1 σ 2 ) ( 1 ς 2 ) Γ ( l 1 ) 0 T T ϱ d ϱ | + | τ 2 ( t 1 t 2 ) ( t 1 t 2 ) ( 1 ς 2 ) + ς 2 T ( l 1 ) ( 1 ς 2 ) ( 1 τ 2 ) Γ ( l ) 0 T d ϱ | ) 0 as t 1 t 2 .
Hence, F ( u , w , y ) demonstrates equicontinuity, establishing it as completely continuous.
Ultimately, we confirm the boundedness of the set B = ( u , w , y ) S | ( u , w , y ) = λ F ( u , w , y ) , λ [ 0 , 1 ] . Let us assume ( u , w , y ) B , then ( u , w , y ) = λ F ( u , w , y ) . For t J , we have u ( t ) = λ F g ( u , w , y ) ( t ) , w ( t ) = λ F h ( u , w , y ) ( t ) and y ( t ) = λ F l ( u , w , y ) ( t ) . Then
t 3 g | u ( t ) | t 3 g { T 3 Γ ( g + 1 ) + | σ 0 T 3 6 ( 1 σ 0 ) Γ ( g 2 ) | + | ς 0 T 3 1 + | σ 0 | ( g 3 ) 2 ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | + | τ 0 T 3 1 + | ς 0 | ( g 2 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | + | σ 0 τ 0 T 3 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | } × Λ f 1 ( ϱ ) + ψ f 1 ( ϱ ) | u ( ϱ ) | + θ f 1 ( ϱ ) | w ( ϱ ) | + Υ f 1 ( ϱ ) | y ( ϱ ) | .
Hence from (14), we have
u C g Λ f 1 * + ψ f 1 * u + θ f 1 * w + Υ f 1 * y .
Similarly, we obtain
w C h Λ f 2 * + ψ f 2 * u + θ f 2 * w + Υ f 2 * y ,
and
y C l Λ f 3 * + ψ f 3 * u + θ f 3 * w + Υ f 3 * y ,
which imply that
u + w + y = C g Λ f 1 * + C h Λ f 2 * + C θ Λ f 3 * + Q ψ u + Q θ w + Q Υ y .
As a result, we have
( u , w , y ) C g Λ f 1 * + C h Λ f 2 * + C θ Λ f 3 * C 0 .
For each t J , where C 0 is provided in (9), signifying the boundedness of B . Therefore, by virtue of the Leray–Schauder alternative, F possesses at least one fixed point, thereby ensuring the existence of at least one solution to problem (1). □
The second outcome hinges on the utilization of Banach’s contraction principle (BCP).
Theorem 3.
Given the continuity assumption of functions f i ( i = 1 , 2 , 3 ) : J × R 3 R , and  ( H 1 )  the existence of constants K f i , L f i , M f i , such that for u , w , y , u * , w * , y * R , and t J , it holds true that:
f i ( t , u , w , y ) f i ( t , u * , w * , y * ) K f i u u * + L f i w w * + M f i y y * .
In addition, suppose that
C g f 1 + C h f 2 + C l f 3 < 1 ,
where
f 1 = K f 1 + L f 1 + M f 1 , f 2 = K f 2 + L f 2 + M f 2 , f 3 = K f 3 + L f 3 + M f 3 .
Under these circumstances, the solution to problem (1) will be unique.
Proof. 
Let us define sup t J f 1 ( t , 0 , 0 , 0 ) = g < , sup t J f 2 ( t , 0 , 0 , 0 ) = h < , and sup t J f 3 ( t , 0 , 0 , 0 ) = l < , such that
r g C g + h C h + l C l 1 [ C g f 1 + C h f 2 + C l f 3 ] .
We prove that F ( χ r ) χ r , where
χ r = ( u , w , y ) S : ( u , w , y ) r .
For ( u , w , y ) χ r , we have
t 3 g | F g ( u , w , y ) ( t ) | t 3 g [ 1 Γ ( g ) 0 t t ϱ g 1 d ϱ + | σ 0 2 ( 1 σ 0 ) Γ ( g 2 ) | 0 T T ϱ 2 d ϱ + | ς 0 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | 0 T T ϱ d ϱ + | τ 0 t t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | 0 T d ϱ + | σ 0 τ 0 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | 0 T d ϱ ] × | f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) f 1 ( ϱ , 0 , 0 , 0 ) | + | f 1 ( ϱ , 0 , 0 , 0 ) | , { T 3 Γ ( g + 1 ) + | σ 0 T 3 6 ( 1 σ 0 ) Γ ( g 2 ) | + | ς 0 T 3 1 + | σ 0 | ( g 3 ) 2 ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | + | τ 0 T 3 1 + | ς 0 | ( g 2 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | + | σ 0 τ 0 T 3 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | } × K f 1 u + L f 1 w + M f 1 y + g , C g f 1 r + g .
Hence,
F g ( u , w , y ) C g f 1 r + g .
Similarly, we can obtain
F h ( u , w , y ) C h f 2 r + h
and
F l ( u , w , y ) C l f 3 r + l .
Combining the aforementioned inequalities (15), (16), and (17), we derive the following:
F ( u , w , y ) r .
Considering ( u , w , y ) , ( u * , w * , y * ) S , and for any t J , it follows that
t 3 g | F g ( u , w , y ) ( t ) F g ( u * , w * , y * ) ( t ) | t 3 g [ 1 Γ ( g ) 0 t t ϱ g 1 d ϱ + | σ 0 2 ( 1 σ 0 ) Γ ( g 2 ) | 0 T T ϱ 2 d ϱ + | ς 0 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | 0 T T ϱ d ϱ + | τ 0 t t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | 0 T d ϱ + | σ 0 τ 0 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | 0 T d ϱ ] × | f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) f 1 ( ϱ , u * ( ϱ ) , w * ( ϱ ) , y * ( ϱ ) ) | d ϱ , C g K f 1 u u * + L f 1 w w * + M f 1 y y *
and hence, we obtain
F g ( u , w , y ) F g ( u * , w * , y * ) C g f 1 u u * + w w * + y y * .
Similarly,
F h ( u , w , y ) F h ( u * , w * , y * ) C h f 2 u u * + w w * + y y * ,
and
F l ( u , w , y ) F l ( u * , w * , y * ) C l f 3 u u * + w w * + y y * .
The inequalities (18), (19), and (20) lead us to conclude that
F ( u , w , y ) F ( u * , w * , y * ) C g f 1 + C h f 2 + C l f 3 ( u , w , y ) ( u * , w * , y * ) .
As C g f 1 + C h f 2 + C l f 3 < 1 , F qualifies as a contraction operator. By BCP, F possesses a unique fixed point, implying the uniqueness of the solution to system (1). □

4. Stability Results

Let us review definitions associated with Ulam stability:
Let Θ f i ( i = 1 , 2 , 3 ) : J R + be non-decreasing functions, and let ϵ f i > 0 . We consider the set of inequalities given below:
| D g u ( t ) f 1 ( t , u ( t ) , w ( t ) , y ( t ) ) | ϵ f 1 , t J , | D h w ( t ) f 2 ( t , u ( t ) , w ( t ) , y ( t ) ) | ϵ f 2 , t J , | D h y ( t ) f 3 ( t , u ( t ) , w ( t ) , y ( t ) ) | ϵ f 3 , t J .
Definition 3
([60]). The system (1) is identified as UH stable if certain positive constants C g , h , l = ( C g , C h , C l ) exist. These constants, along with ϵ = ( ϵ g , ϵ h , ϵ l ) > 0 , guarantee that for every solution ( u , w , y ) S of (21), there exists a unique solution ( v , x , z ) S . This solution satisfies
| ( u , w , y ) ( t ) ( v , x , z ) ( t ) | C g , h , l ϵ , t J .
Definition 4
([60]). The system (1) is identified as generalized UH stable if a function Φ g , h , l C ( R + , R + ) with Φ g , h , l ( 0 ) = 0 exists. This function, given a solution ( u , w , y ) S of (21), ensures the existence of a unique solution ( v , x , z ) S for problem (1). Moreover, this solution satisfies
| ( u , w , y ) ( t ) ( v , x , z ) ( t ) | Φ g , h , l ( ϵ ) , t J .
Remark 1.
We designate ( u , w , y ) S as a solution to inequality (21) provided that there exist functions Ψ f i ( i = 1 , 2 , 3 ) C ( J , R ) , hinging on u , w , y , respectively, satisfying the conditions
( A 1 )  
| Ψ f i ( t ) | ϵ f i , t J ;
( A 2 )  
For t J , the system of equations is described as follows:
D g u ( t ) = f 1 ( t , u ( t ) , w ( t ) , y ( t ) ) + Ψ f 1 ( t ) , D h w ( t ) = f 2 ( t , u ( t ) , w ( t ) , y ( t ) ) + Ψ f 2 ( t ) , D l y ( t ) = f 3 ( t , u ( t ) , w ( t ) , y ( t ) ) + Ψ f 3 ( t ) .
Lemma 5.
If ( u , w , y ) S constitutes a solution to inequality (21), then we obtain
u n 1 C g ϵ f 1 , t J , w n 2 C h ϵ f 2 , t J , y n 3 C l ϵ f 3 , t J .
Proof. 
Using ( A 2 ) from Remark 1 and considering t J , it follows that
D g u ( t ) = f 1 ( t , u ( t ) , w ( t ) , y ( t ) ) + Ψ f 1 ( t ) , D h w ( t ) = f 2 ( t , u ( t ) , w ( t ) , y ( t ) ) + Ψ f 2 ( t ) , D l y ( t ) = f 3 ( t , u ( t ) , w ( t ) , y ( t ) ) + Ψ f 3 ( t ) , D g 3 u ( 0 ) = σ 0 D g 3 u ( T ) , D g 2 u ( 0 ) = ς 0 D g 2 u ( T ) , D g 1 u ( 0 ) = τ 0 D g 1 u ( T ) , D h 3 w ( 0 ) = σ 1 D h 3 w ( T ) , D h 2 w ( 0 ) = ς 1 D h 2 w ( T ) , D h 1 w ( 0 ) = τ 1 D h 1 w ( T ) , D l 3 y ( 0 ) = σ 2 D l 3 y ( T ) , D l 2 y ( 0 ) = ς 2 D l 2 y ( T ) , D l 1 y ( 0 ) = τ 2 D l 1 y ( T ) .
Therefore, considering Lemma 1, we can express the solution to the first equation in (24) as follows:
u ( t ) = 1 Γ ( g ) 0 t t ϱ g 1 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) + Ψ f 1 ( ϱ ) d ϱ + σ 0 t g 3 2 ( 1 σ 0 ) Γ ( g 2 ) 0 T T ϱ 2 f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) + Ψ f 1 ( ϱ ) d ϱ + ς 0 t g 3 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) + Ψ f 1 ( ϱ ) d ϱ + τ 0 t g 2 t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) + Ψ f 1 ( ϱ ) d ϱ + σ 0 τ 0 t g 3 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) 0 T f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) + Ψ f 1 ( ϱ ) d ϱ ,
From Equation (25), we have
t 3 g | u ( t ) n 1 ( t ) | t 3 g Γ ( g ) 0 t t ϱ g 1 | Ψ f 1 ( ϱ ) | d ϱ + σ 0 2 ( 1 σ 0 ) Γ ( g 2 ) 0 T T ϱ 2 | Ψ f 1 ( ϱ ) | d ϱ + ς 0 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ | Ψ f 1 ( ϱ ) | d ϱ + τ 0 t t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T | Ψ f 1 ( ϱ ) | d ϱ + σ 0 τ 0 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) 0 T | Ψ f 1 ( ϱ ) | d ϱ .
Here, n 1 ( t ) represents terms devoid of Ψ f 1 . Utilizing (6) alongside ( A 1 ) from Remark 1, (26) transforms into:
u n 1 C g ϵ f 1 .
Applying a similar approach to the second equation of (25), we arrive at
w n 2 C h ϵ f 2 ,
and
y n 3 C l ϵ f 3 .
Theorem 4.
Under the hypothesis ( H 1 ) and if
Δ = 1 [ Ω f 2 M f 2 Ω f 3 L f 3 + Ω f 1 L f 1 ( Ω f 2 K f 2 + Ω f 3 K f 3 Ω f 2 M f 2 ) + Ω f 1 M f 1 ( Ω f 3 K f 3 + Ω f 2 K f 2 Ω f 3 L f 3 ) ] > 0 .
Then problem (1) is UH stable, where Ω f 1 = C g ( 1 C g K f 1 ) , Ω f 2 = C h ( 1 C h L f 2 ) and Ω f 3 = C l ( 1 C l M f 3 ) .
Proof. 
Let ( u , w , y ) S represent the solution to (21), while ( v , x , z ) S denote the unique solution to the provided system:
D g v ( t ) = f 1 ( t , v ( t ) , x ( t ) , z ( t ) ) , t J , D h x ( t ) = f 2 ( t , v ( t ) , x ( t ) , z ( t ) ) , t J , D l z ( t ) = f 3 ( t , v ( t ) , x ( t ) , z ( t ) ) , t J , D g 3 v ( 0 ) = σ 0 D g 3 v ( T ) , D g 2 v ( 0 ) = ς 0 D g 2 v ( T ) , D g 1 v ( 0 ) = τ 0 D g 1 v ( T ) , D h 3 x ( 0 ) = σ 1 D h 3 x ( T ) , D h 2 x ( 0 ) = ς 1 D h 2 x ( T ) , D h 1 x ( 0 ) = τ 1 D h 1 x ( T ) , D l 3 z ( 0 ) = σ 2 D l 3 z ( T ) , D l 2 z ( 0 ) = ς 2 D l 2 z ( T ) , D l 1 z ( 0 ) = τ 2 D l 1 z ( T ) .
In light of Lemma 1, for t J , the solution to the first equation of (28) takes the form:
v ( t ) = 1 Γ ( g ) 0 t t ϱ g 1 f 1 ( ϱ , v ( ϱ ) , x ( ϱ ) , z ( ϱ ) ) d ϱ + σ 0 t g 3 2 ( 1 σ 0 ) Γ ( g 2 ) 0 T T ϱ 2 f 1 ( ϱ , v ( ϱ ) , x ( ϱ ) , z ( ϱ ) ) d ϱ + ς 0 t g 3 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) 0 T T ϱ f 1 ( ϱ , v ( ϱ ) , x ( ϱ ) , z ( ϱ ) ) d ϱ + τ 0 t g 2 t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) 0 T f 1 ( ϱ , v ( ϱ ) , x ( ϱ ) , z ( ϱ ) ) d ϱ + σ 0 τ 0 t g 3 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) 0 T f 1 ( ϱ , v ( ϱ ) , x ( ϱ ) , z ( ϱ ) ) d ϱ .
Consider
t 3 g | u ( t ) v ( t ) | t 3 g | u ( t ) n 1 ( t ) | + t 3 g | n 1 ( t ) v ( t ) | .
Using Lemma 5 in the above inequality (30), we obtain
t 3 g | u ( t ) v ( t ) | C g ϵ f 1 + t 3 g [ 1 Γ ( g ) 0 t t ϱ g 1 d ϱ + | σ 0 2 ( 1 σ 0 ) Γ ( g 2 ) | 0 T T ϱ 2 d ϱ + | ς 0 t ( 1 σ 0 ) + σ 0 T ( g 2 ) ( 1 σ 0 ) ( 1 ς 0 ) Γ ( g 1 ) | 0 T T ϱ d ϱ + | τ 0 t t ( 1 ς 0 ) + ς 0 T ( g 1 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g ) | 0 T d ϱ + | σ 0 τ 0 T 2 1 + ς 0 2 ( 1 σ 0 ) ( 1 ς 0 ) ( 1 τ 0 ) Γ ( g 2 ) | 0 T d ϱ ] × | f 1 ( ϱ , u ( ϱ ) , w ( ϱ ) , y ( ϱ ) ) f 1 ( ϱ , v ( ϱ ) , x ( ϱ ) , z ( ϱ ) ) | .
Using ( H 1 ) and (6) in (31), we have
u v C g ϵ f 1 + C g K f 1 u v + L f 1 w x + M f 1 y z .
So, we obtain
u v Ω f 1 ϵ f 1 + L f 1 w x + M f 1 y z .
Similarly, we can obtain
w x Ω f 2 ϵ f 2 + K f 2 u v + M f 2 y z ,
and
y z Ω f 3 ϵ f 3 + K f 3 u v + L f 3 w x .
We write Equations (32)–(34) as:
1 Ω f 1 L f 1 Ω f 1 M f 1 Ω f 2 K f 2 1 Ω f 2 M f 2 Ω f 3 K f 3 Ω f 3 L f 3 1 u v w x y z Ω f 1 ϵ f 1 Ω f 2 ϵ f 2 Ω f 3 ϵ f 3 .
Given the preceding matrices, the result is
u v w x y z a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Ω f 1 ϵ f 1 Ω f 2 ϵ f 2 Ω f 3 ϵ f 3 ,
where Δ is given in (27) and
a 11 = 1 Ω f 2 M f 2 Ω f 3 L f 3 Δ , a 12 = Ω f 1 L f 1 + Ω f 1 M f 1 Ω f 3 L f 3 Δ , a 13 = Ω f 1 M f 1 + Ω f 1 L f 1 Ω f 2 M f 2 Δ , a 21 = Ω f 2 K f 2 + Ω f 2 M f 2 Ω f 3 K f 3 Δ , a 22 = 1 Ω f 1 M f 1 Ω f 3 K f 3 Δ , a 23 = Ω f 2 M f 2 + Ω f 1 M f 1 Ω f 2 K f 2 Δ , a 31 = Ω f 3 K f 3 + Ω f 2 K f 2 Ω f 3 L f 3 Δ , a 32 = Ω f 3 L f 3 + Ω f 1 L f 1 Ω f 3 K f 3 Δ , a 33 = 1 Ω f 1 L f 1 Ω f 2 K f 2 Δ .
From (35), we obtain
u v a 11 Ω f 1 ϵ f 1 + a 12 Ω f 2 ϵ f 2 + a 13 Ω f 3 ϵ f 3 , w x a 21 Ω f 1 ϵ f 1 + a 22 Ω f 2 ϵ f 2 + a 23 Ω f 3 ϵ f 3 , y z a 31 Ω f 1 ϵ f 1 + a 32 Ω f 2 ϵ f 2 + a 33 Ω f 3 ϵ f 3 ,
Following this, we obtain
u v + w x + y z Ω f 1 ϵ f 1 ( a 11 + a 21 + a 31 ) + Ω f 2 ϵ f 2 ( a 12 + a 22 + a 32 ) + Ω f 3 ϵ f 3 ( a 13 + a 23 + a 33 ) .
Let ϵ = max { ϵ f 1 , ϵ f 2 , ϵ f 3 } . Consequently, by (36), we arrive at
( u , w , y ) ( v , x , z ) C g , h , l ϵ ,
where
C g , h , l = Ω f 1 ( a 11 + a 21 + a 31 ) + Ω f 2 ( a 12 + a 22 + a 32 ) + Ω f 3 ( a 13 + a 23 + a 33 ) .
Remark 2.
If we set Φ g , h , l ( ϵ ) = C g , h , l ϵ with Φ g , h , l ( 0 ) = 0 in (37), system (1) exhibits generalized UH stability, in accordance with Definition 4.

5. Example

Example 1.
Let us examine the FDEs systems given below:
D 5 2 u ( t ) = e 3 t + 1 11 u ( t ) cos ( t ) + e t 20 w ( t ) + e t 12 sin y ( t ) , D 7 3 w ( t ) = t t 2 + 3 + 1 4 π u ( t ) tan 1 ( t ) + 1 80 + t 2 sin w ( t ) + 1 13 y ( t ) sin ( t ) , D 9 4 y ( t ) = e t 5 + e t 12 sin u ( t ) + 1 16 + t w ( t ) + e t 15 y ( t ) cos ( t ) , D 1 2 u ( 0 ) = 1 2 D 1 2 u ( 1 ) , D 1 2 u ( 0 ) = 1 3 D 1 2 u ( 1 ) , D 3 2 u ( 0 ) = D 3 2 u ( 1 ) , D 2 3 w ( 0 ) = 1 2 D 2 3 w ( 1 ) , D 1 3 w ( 0 ) = 1 3 D 1 3 w ( 1 ) , D 4 3 w ( 0 ) = D 4 3 w ( 1 ) , D 3 4 y ( 0 ) = 1 2 D 3 4 y ( 1 ) , D 1 4 y ( 0 ) = 1 3 D 1 4 y ( 1 ) , D 5 4 y ( 0 ) = D 5 4 y ( 1 ) .
where t [ 0 , 1 ] . From problem (38), we have g = 5 / 2 , h = 7 / 3 , l = 9 / 4 , T = 1 , σ 0 = σ 1 = σ 2 = 1 / 2 , ς 0 = ς 1 = ς 2 = 1 / 3 and τ 0 = τ 1 = τ 2 = 1 . Moreover, Λ f 1 * = 1 / e 3 , ψ f 1 * = 1 / 11 , θ f 1 * = 1 / 20 e , Υ f 1 * = 1 / 12 e , Λ f 2 * = 2 , ψ f 2 * = 1 / 16 , θ f 2 * = 1 / 9 , Υ f 2 * = 1 / 13 , Λ f 3 * = 1 / 5 e , ψ f 3 * = 1 / 12 e , θ f 3 * = 1 / 17 , and Υ f 3 * = 1 / 15 e . Then the conditions of the Theorem 2:
Q ψ = C g ψ f 1 * + C h ψ f 2 * + C l ψ f 3 * 0.31519492 < 1 . Q θ = C g θ f 1 * + C h θ f 2 * + C l θ f 3 * 0.31558696 < 1 . Q Υ = C g Υ f 1 * + C h Υ f 2 * + C l Υ f 3 * 0.22346367 < 1 .
are satisfied. For Theorem 3, we can see in problem (38), that K f 1 = 1 / 11 , L f 1 = 1 / 20 e , M f 1 = 1 / 12 e , K f 2 = 1 / 16 , L f 2 = 1 / 9 , M f 2 = 1 / 13 and K f 3 = 1 / 12 e , L f 3 = 1 / 17 , M f 3 = 1 / 15 e . Therefore,
C g f 1 + C h f 2 + C l f 3 0.85424557 < 1 .
Thus, the system (38) possesses a unique solution.
Moreover, the condition of Theorem 4:
Δ 0.95104343 > 0
is also fulfilled. Consequently, the problem (38) demonstrates UH stability and generalized UH stability.

6. Conclusions

This manuscript has effectively demonstrated the existence and uniqueness of solutions for problem (1) using the fixed point theory. Moreover, it has derived the essential criteria for UH and generalized UH stability. By illustrating an example, the practical implications of these findings have been highlighted, underscoring the significance of the research in broader applications.
The findings are new and intriguing. Specifically, by setting σ = ς = τ = 0 ( = 0 , 1 , 2 ) and g , h , l = 3 in the proposed system (1), the following third-order ODEs system alongside initial conditions, is derived.
u ( t ) = f 1 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , w ( t ) = f 2 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , y ( t ) = f 3 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , u ( 0 ) = 0 , u ( 0 ) = 0 , u ( 0 ) = 0 , w ( 0 ) = 0 , w ( 0 ) = 0 , w ( 0 ) = 0 , y ( 0 ) = 0 , y ( 0 ) = 0 , y ( 0 ) = 0 .
Similarly, by setting σ = ς = τ = 1 ( = 0 , 1 , 2 ) and g , h , l = 3 in system (1), a system of ODEs of third-order alongside anti-periodic BCs is obtained, given as
u ( t ) = f 1 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , w ( t ) = f 2 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , y ( t ) = f 3 ( t , u ( t ) , w ( t ) , y ( t ) ) ; t J , u ( 0 ) = u ( T ) , u ( 0 ) = u ( T ) , u ( 0 ) = u ( T ) , w ( 0 ) = w ( T ) , w ( 0 ) = w ( T ) , w ( 0 ) = w ( T ) , y ( 0 ) = y ( T ) , y ( 0 ) = y ( T ) , y ( 0 ) = y ( T ) .
As far as we know, this is the first manuscript addressing a nonlocal generalized fractional order BVP involving a tripled system of nonlinear FDEs. Furthermore, this manuscript is the first to obtain solutions for a third-order ODEs system alongside initial and anti-periodic BCs involving three equations using the RL fractional derivative. Future research directions include exploring alternative fractional operators, integrating fractal-fractional derivatives for more comprehensive modeling, examining other types of stability, and extending the study to multi-point boundary conditions.

Author Contributions

Conceptualization, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H.; methodology, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H.; formal analysis, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H.; investigation, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H.; resources, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H.; writing—original draft preparation, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H.; writing—review and editing, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H.; supervision, Z.A. and K.A.A.; project administration, Y.A.M., M.N.A.R., F.A.A., Z.A., K.A.A. and M.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Data Availability Statement

Data are contained within the article.

Acknowledgments

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1). K. Aldwoah wishes to extend his sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  2. Can, N.H.; Jafari, H.; Ncube, M.N. Fractional calculus in data fitting. Alex. Eng. J. 2020, 59, 3269–3274. [Google Scholar] [CrossRef]
  3. Shah, N.A.; Vieru, D.; Fetecau, C. Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. J. Magn. Magn. Mater. 2016, 409, 10–19. [Google Scholar] [CrossRef]
  4. Ali, Z. Theoretical and Computational Study of Fractional-order Mathematical Models for Infectious Diseases. Ph.D. Thesis, Monash University, Churchill, Australia, 2023. [Google Scholar] [CrossRef]
  5. Jiang, Y.; Zhang, B.; Shu, X.; Wei, Z. Fractional-order autonomous circuits with order larger than one. J. Adv. Res. 2020, 25, 217–225. [Google Scholar] [CrossRef] [PubMed]
  6. Ali, Z.; Nia, S.N.; Rabiei, F.; Shah, K.; Tan, M.K. A semi-analytical approach for the solution of time-fractional Navier-Stokes equation. Adv. Math. Phys. 2021, 2021, 5547804. [Google Scholar] [CrossRef]
  7. Abdulwahhab, O.W.; Abbas, N.H. A new method to tune a fractional-order PID controller for a twin rotor aerodynamic system. Arab. J. Sci. Eng. 2017, 42, 5179–5189. [Google Scholar] [CrossRef]
  8. Meral, F.; Royston, T.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
  9. Meilanov, R.P.; Magomedov, R.A. Thermodynamics in Fractional Calculus. J. Eng. Phys. Thermophy 2014, 87, 1521–1531. [Google Scholar] [CrossRef]
  10. Matušu, R. Application of fractional order calculus to control theory. Int. J. Math. Model. Methods Appl. Sci. 2011, 5, 1162–1169. [Google Scholar]
  11. Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
  12. Oldham, K. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
  13. Das, S. Application of Generalized Fractional Calculus in Electrical Circuit Analysis and Electromagnetics. In Functional Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
  14. Graef, J.R.; Kong, L.; Kong, Q.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition. Electron. J. Qual. Theory Differ. Equ. 2013, 55, 1–11. [Google Scholar] [CrossRef]
  15. Yan, R.; Sun, S.; Sun, Y.; Han, Z. Boundary value problems for fractional differential equations with nonlocal boundary conditions. Adv. Differ. Equ. 2013, 2013, 176. [Google Scholar] [CrossRef]
  16. Henderson, J.; Luca, R.; Tudorache, A. On a System of Fractional Differential Equations with Coupled Integral Boundary Conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
  17. Xue, T.; Fan, X.; Cao, H.; Fu, L. A periodic boundary value problem of fractional differential equation involving p(t)-Laplacian operator. Math. Biosci. Eng. 2023, 20, 4421–4436. [Google Scholar] [CrossRef]
  18. Agarwal, R.P.; Ahmad, B.; Alsaedi, A. Fractional-order differential equations with anti-periodic boundary conditions: A survey. Bound. Value Probl. 2017, 2017, 173. [Google Scholar] [CrossRef]
  19. Xue, T.; Fan, X.; Cao, H.; Fu, L. Multi-point boundary value problems for a class of Riemann-Liouville fractional differential equations. Adv. Differ. Equ. 2014, 2014, 151. [Google Scholar] [CrossRef]
  20. Ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
  21. Deshpande, A.S.; Daftardar-Gejji, V. On disappearance of chaos in fractional systems. Chaos Solitons Fractals 2017, 102, 119–126. [Google Scholar] [CrossRef]
  22. Wang, S.; Xu, M. Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal. Real World Appl. 2009, 10, 1087–1096. [Google Scholar] [CrossRef]
  23. Pedersen, M.; Lin, Z. Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition. Appl. Math. Lett. 2001, 14, 171–176. [Google Scholar] [CrossRef]
  24. Chen, Y.; An, H. Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 2008, 200, 87–95. [Google Scholar] [CrossRef]
  25. Pao, C.V. Applications of Coupled Systems to Model Problems. In Nonlinear Parabolic and Elliptic Equations; Springer: Boston, MA, USA, 1992. [Google Scholar] [CrossRef]
  26. Wang, J. Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 2017, 73, 157–162. [Google Scholar] [CrossRef]
  27. Agarwal, R.; O’Regan, D.; Hristova, S. Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math. 2015, 60, 653–676. [Google Scholar] [CrossRef]
  28. Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
  29. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
  30. Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
  31. Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäiuser: Boston, MA, USA, 1998. [Google Scholar]
  32. Jung, S.M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef]
  33. Khan, H.; Gómez-Aguilar, J.F.; Khan, A.; Khan, T.S. Stability analysis for fractional order advection-reaction diffusion system. Phys. A Stat. Mech. Its Appl. 2019, 521, 737–751. [Google Scholar] [CrossRef]
  34. Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A.; Ashry, G.A. On applications of Ulam–Hyers stability in biology and economics. arXiv 2010, arXiv:1004.1354. [Google Scholar]
  35. Wang, J.; Shah, K.; Ali, A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Meth. Appl. Sci. 2018, 41, 2392–2402. [Google Scholar] [CrossRef]
  36. Ali, Z.; Zada, A.; Shah, K. On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malays. Math. Sci. Soc. 2019, 42, 2681–2699. [Google Scholar] [CrossRef]
  37. Khan, A.; Shah, K.; Li, Y.; Khan, T.S. Ulam type stability for a coupled systems of boundary value problems of nonlinear fractional differential equations. J. Funct. Spaces 2017, 2017, 1–8. [Google Scholar] [CrossRef]
  38. Subramanian, M.; Alzabut, J.; Baleanu, D.; Samei, M.E.; Zada, A. Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv. Differ. Equ. 2021, 2021, 267. [Google Scholar] [CrossRef]
  39. Mehmood, N.; Abbas, A.; Akgul, A.; Abdeljawad, T.; Alqudah, M.A. Existence and stability results for coupled system of fractional differential equations involving AB-Caputo derivative. Fractals 2023, 31, 2340023. [Google Scholar] [CrossRef]
  40. Ibnelazyz, L.; Touchent, K.; Guida, K. Coupled Nonlocal Boundary Value Problems for Fractional Integro-differential Langevin System via Variable Coefficient. Kragujev. J. Math. 2024, 50, 357–386. [Google Scholar] [CrossRef]
  41. Basha, M.; Dai, B.; Al-Sadi, W. Existence and Stability for a Nonlinear Coupled p-Laplacian System of Fractional Differential Equations. J. Math. 2021, 2021, 6687949. [Google Scholar] [CrossRef]
  42. Saeed, A.M.; Abdo, M.S.; Jeelani, M.B. Existence and Ulam-Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives. Mathematics 2021, 9, 2543. [Google Scholar] [CrossRef]
  43. Baghani, H.; Alzabut, J.; Farokhi-Ostad, J.; Nieto, J.J. Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1731–1741. [Google Scholar] [CrossRef]
  44. Salim, A.; Lazreg, J.E.; Benchohra, M. Existence, uniqueness and Ulam-Hyers-Rassias stability of differential coupled systems with Riesz-Caputo fractional derivative. Tatra Mt. Math. Publ. 2023, 84, 111–138. [Google Scholar] [CrossRef]
  45. Kumar, P.; Govindaraj, V.; Murillo-Arcila, M. The existence, uniqueness, and stability results for a nonlinear coupled system using ψ-Caputo fractional derivatives. Bound. Value Probl. 2023, 2023, 75. [Google Scholar]
  46. Duffy, B.R.; Wilson, S.K. A third-order differential equation arising in thin-film flows and relevant to Tanner’s Law. Appl. Math. Lett. 1997, 10, 63–68. [Google Scholar] [CrossRef]
  47. Gregus, M. Applications of Third Order Linear Differential Equation Theory. In Third Order Linear Differential Equations, Mathematics and Its Applications; Springer: Dordrecht, The Netherland, 1987; Volume 22. [Google Scholar] [CrossRef]
  48. Silva, T.C.; Tenenblat, K. Third order differential equations describing pseudospherical surfaces. J. Differ. Equ. 2015, 259, 4897–4923. [Google Scholar] [CrossRef]
  49. Gupta, C.P. On a third-order three-point boundary value problem at resonance. Differ. Integral Equ. 1989, 2, 1–12. [Google Scholar] [CrossRef]
  50. Hastings, S.P. On a Third Order Differential Equation from Biology. Q. J. Math. 1972, 23, 435–448. [Google Scholar] [CrossRef]
  51. Aftabizadeh, A.R.; Huang, Y.K.; Pavel, N.H. Nonlinear third-order differential equations with anti-periodic boundary conditions and some Optimal control problems. J. Math. Anal. Appl. 1995, 192, 266–293. [Google Scholar] [CrossRef]
  52. Sherman, S. A third-order nonlinear system arising from a nuclear spin generator. Contrib. Diff. Equ. 1963, 2, 197–227. [Google Scholar]
  53. Houas, M.; Samei, M.E.; Rezapour, S. Solvability and stability for a fractional quantum jerk type problem including Riemann-Liouville-Caputo fractional derivatives. Part. Differ. Equ. Appl. Math. 2023, 7, 100514. [Google Scholar] [CrossRef]
  54. Chen, H.L. Antiperiodic wavelets. J. Comput. Math. 1996, 14, 32–39. [Google Scholar]
  55. Delvos, F.J.; Knoche, L. Lacunary interpolation by antiperiodic trigonometric polynomials. BIT Numer. Math. 1999, 39, 439–450. [Google Scholar] [CrossRef]
  56. Shao, J. Anti-periodic solutions for shunting inhibitory cellular neural networks with timevarying delays. Phys. Lett. A 2008, 372, 5011–5016. [Google Scholar] [CrossRef]
  57. Zhao, X.; Chang, X. Existence of anti-periodic solutions for second-order ordinary differential equations involving the Fučík spectrum. Bound. Value Probl. 2012, 2012, 149. [Google Scholar] [CrossRef]
  58. Shah, K.; Tunç, C. Existence theory and stability analysis to a system of boundary value problem. J. Taibah Univ. Sci. 2017, 11, 1330–1342. [Google Scholar] [CrossRef]
  59. Ali, Z.; Shah, K.; Zada, A.; Kumam, P. Mathematical Analysis of Coupled Systems with Fractional Order Boundary Conditions. Fractals 2020, 28, 2040012. [Google Scholar] [CrossRef]
  60. Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Madani, Y.A.; Rabih, M.N.A.; Alqarni, F.A.; Ali, Z.; Aldwoah, K.A.; Hleili, M. Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System. Fractal Fract. 2024, 8, 416. https://doi.org/10.3390/fractalfract8070416

AMA Style

Madani YA, Rabih MNA, Alqarni FA, Ali Z, Aldwoah KA, Hleili M. Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System. Fractal and Fractional. 2024; 8(7):416. https://doi.org/10.3390/fractalfract8070416

Chicago/Turabian Style

Madani, Yasir A., Mohammed Nour A. Rabih, Faez A. Alqarni, Zeeshan Ali, Khaled A. Aldwoah, and Manel Hleili. 2024. "Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System" Fractal and Fractional 8, no. 7: 416. https://doi.org/10.3390/fractalfract8070416

APA Style

Madani, Y. A., Rabih, M. N. A., Alqarni, F. A., Ali, Z., Aldwoah, K. A., & Hleili, M. (2024). Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System. Fractal and Fractional, 8(7), 416. https://doi.org/10.3390/fractalfract8070416

Article Metrics

Back to TopTop