Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System
Abstract
:1. Introduction
2. Preliminaries
3. Existence Theory
- In addition, it is supposed that . The system (1) under these conditions admits at least one solution.
4. Stability Results
- ;
- For , the system of equations is described as follows:
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Can, N.H.; Jafari, H.; Ncube, M.N. Fractional calculus in data fitting. Alex. Eng. J. 2020, 59, 3269–3274. [Google Scholar] [CrossRef]
- Shah, N.A.; Vieru, D.; Fetecau, C. Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. J. Magn. Magn. Mater. 2016, 409, 10–19. [Google Scholar] [CrossRef]
- Ali, Z. Theoretical and Computational Study of Fractional-order Mathematical Models for Infectious Diseases. Ph.D. Thesis, Monash University, Churchill, Australia, 2023. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, B.; Shu, X.; Wei, Z. Fractional-order autonomous circuits with order larger than one. J. Adv. Res. 2020, 25, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Nia, S.N.; Rabiei, F.; Shah, K.; Tan, M.K. A semi-analytical approach for the solution of time-fractional Navier-Stokes equation. Adv. Math. Phys. 2021, 2021, 5547804. [Google Scholar] [CrossRef]
- Abdulwahhab, O.W.; Abbas, N.H. A new method to tune a fractional-order PID controller for a twin rotor aerodynamic system. Arab. J. Sci. Eng. 2017, 42, 5179–5189. [Google Scholar] [CrossRef]
- Meral, F.; Royston, T.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Meilanov, R.P.; Magomedov, R.A. Thermodynamics in Fractional Calculus. J. Eng. Phys. Thermophy 2014, 87, 1521–1531. [Google Scholar] [CrossRef]
- Matušu, R. Application of fractional order calculus to control theory. Int. J. Math. Model. Methods Appl. Sci. 2011, 5, 1162–1169. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Oldham, K. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
- Das, S. Application of Generalized Fractional Calculus in Electrical Circuit Analysis and Electromagnetics. In Functional Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.; Kong, Q.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem with Dirichlet boundary condition. Electron. J. Qual. Theory Differ. Equ. 2013, 55, 1–11. [Google Scholar] [CrossRef]
- Yan, R.; Sun, S.; Sun, Y.; Han, Z. Boundary value problems for fractional differential equations with nonlocal boundary conditions. Adv. Differ. Equ. 2013, 2013, 176. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R.; Tudorache, A. On a System of Fractional Differential Equations with Coupled Integral Boundary Conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
- Xue, T.; Fan, X.; Cao, H.; Fu, L. A periodic boundary value problem of fractional differential equation involving p(t)-Laplacian operator. Math. Biosci. Eng. 2023, 20, 4421–4436. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Ahmad, B.; Alsaedi, A. Fractional-order differential equations with anti-periodic boundary conditions: A survey. Bound. Value Probl. 2017, 2017, 173. [Google Scholar] [CrossRef]
- Xue, T.; Fan, X.; Cao, H.; Fu, L. Multi-point boundary value problems for a class of Riemann-Liouville fractional differential equations. Adv. Differ. Equ. 2014, 2014, 151. [Google Scholar] [CrossRef]
- Ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Deshpande, A.S.; Daftardar-Gejji, V. On disappearance of chaos in fractional systems. Chaos Solitons Fractals 2017, 102, 119–126. [Google Scholar] [CrossRef]
- Wang, S.; Xu, M. Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal. Real World Appl. 2009, 10, 1087–1096. [Google Scholar] [CrossRef]
- Pedersen, M.; Lin, Z. Blow-up analysis for a system of heat equations coupled through a nonlinear boundary condition. Appl. Math. Lett. 2001, 14, 171–176. [Google Scholar] [CrossRef]
- Chen, Y.; An, H. Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 2008, 200, 87–95. [Google Scholar] [CrossRef]
- Pao, C.V. Applications of Coupled Systems to Model Problems. In Nonlinear Parabolic and Elliptic Equations; Springer: Boston, MA, USA, 1992. [Google Scholar] [CrossRef]
- Wang, J. Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 2017, 73, 157–162. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Hristova, S. Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math. 2015, 60, 653–676. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäiuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef]
- Khan, H.; Gómez-Aguilar, J.F.; Khan, A.; Khan, T.S. Stability analysis for fractional order advection-reaction diffusion system. Phys. A Stat. Mech. Its Appl. 2019, 521, 737–751. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A.; Ashry, G.A. On applications of Ulam–Hyers stability in biology and economics. arXiv 2010, arXiv:1004.1354. [Google Scholar]
- Wang, J.; Shah, K.; Ali, A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Meth. Appl. Sci. 2018, 41, 2392–2402. [Google Scholar] [CrossRef]
- Ali, Z.; Zada, A.; Shah, K. On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malays. Math. Sci. Soc. 2019, 42, 2681–2699. [Google Scholar] [CrossRef]
- Khan, A.; Shah, K.; Li, Y.; Khan, T.S. Ulam type stability for a coupled systems of boundary value problems of nonlinear fractional differential equations. J. Funct. Spaces 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Subramanian, M.; Alzabut, J.; Baleanu, D.; Samei, M.E.; Zada, A. Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv. Differ. Equ. 2021, 2021, 267. [Google Scholar] [CrossRef]
- Mehmood, N.; Abbas, A.; Akgul, A.; Abdeljawad, T.; Alqudah, M.A. Existence and stability results for coupled system of fractional differential equations involving AB-Caputo derivative. Fractals 2023, 31, 2340023. [Google Scholar] [CrossRef]
- Ibnelazyz, L.; Touchent, K.; Guida, K. Coupled Nonlocal Boundary Value Problems for Fractional Integro-differential Langevin System via Variable Coefficient. Kragujev. J. Math. 2024, 50, 357–386. [Google Scholar] [CrossRef]
- Basha, M.; Dai, B.; Al-Sadi, W. Existence and Stability for a Nonlinear Coupled p-Laplacian System of Fractional Differential Equations. J. Math. 2021, 2021, 6687949. [Google Scholar] [CrossRef]
- Saeed, A.M.; Abdo, M.S.; Jeelani, M.B. Existence and Ulam-Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives. Mathematics 2021, 9, 2543. [Google Scholar] [CrossRef]
- Baghani, H.; Alzabut, J.; Farokhi-Ostad, J.; Nieto, J.J. Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1731–1741. [Google Scholar] [CrossRef]
- Salim, A.; Lazreg, J.E.; Benchohra, M. Existence, uniqueness and Ulam-Hyers-Rassias stability of differential coupled systems with Riesz-Caputo fractional derivative. Tatra Mt. Math. Publ. 2023, 84, 111–138. [Google Scholar] [CrossRef]
- Kumar, P.; Govindaraj, V.; Murillo-Arcila, M. The existence, uniqueness, and stability results for a nonlinear coupled system using ψ-Caputo fractional derivatives. Bound. Value Probl. 2023, 2023, 75. [Google Scholar]
- Duffy, B.R.; Wilson, S.K. A third-order differential equation arising in thin-film flows and relevant to Tanner’s Law. Appl. Math. Lett. 1997, 10, 63–68. [Google Scholar] [CrossRef]
- Gregus, M. Applications of Third Order Linear Differential Equation Theory. In Third Order Linear Differential Equations, Mathematics and Its Applications; Springer: Dordrecht, The Netherland, 1987; Volume 22. [Google Scholar] [CrossRef]
- Silva, T.C.; Tenenblat, K. Third order differential equations describing pseudospherical surfaces. J. Differ. Equ. 2015, 259, 4897–4923. [Google Scholar] [CrossRef]
- Gupta, C.P. On a third-order three-point boundary value problem at resonance. Differ. Integral Equ. 1989, 2, 1–12. [Google Scholar] [CrossRef]
- Hastings, S.P. On a Third Order Differential Equation from Biology. Q. J. Math. 1972, 23, 435–448. [Google Scholar] [CrossRef]
- Aftabizadeh, A.R.; Huang, Y.K.; Pavel, N.H. Nonlinear third-order differential equations with anti-periodic boundary conditions and some Optimal control problems. J. Math. Anal. Appl. 1995, 192, 266–293. [Google Scholar] [CrossRef]
- Sherman, S. A third-order nonlinear system arising from a nuclear spin generator. Contrib. Diff. Equ. 1963, 2, 197–227. [Google Scholar]
- Houas, M.; Samei, M.E.; Rezapour, S. Solvability and stability for a fractional quantum jerk type problem including Riemann-Liouville-Caputo fractional derivatives. Part. Differ. Equ. Appl. Math. 2023, 7, 100514. [Google Scholar] [CrossRef]
- Chen, H.L. Antiperiodic wavelets. J. Comput. Math. 1996, 14, 32–39. [Google Scholar]
- Delvos, F.J.; Knoche, L. Lacunary interpolation by antiperiodic trigonometric polynomials. BIT Numer. Math. 1999, 39, 439–450. [Google Scholar] [CrossRef]
- Shao, J. Anti-periodic solutions for shunting inhibitory cellular neural networks with timevarying delays. Phys. Lett. A 2008, 372, 5011–5016. [Google Scholar] [CrossRef]
- Zhao, X.; Chang, X. Existence of anti-periodic solutions for second-order ordinary differential equations involving the Fučík spectrum. Bound. Value Probl. 2012, 2012, 149. [Google Scholar] [CrossRef]
- Shah, K.; Tunç, C. Existence theory and stability analysis to a system of boundary value problem. J. Taibah Univ. Sci. 2017, 11, 1330–1342. [Google Scholar] [CrossRef]
- Ali, Z.; Shah, K.; Zada, A.; Kumam, P. Mathematical Analysis of Coupled Systems with Fractional Order Boundary Conditions. Fractals 2020, 28, 2040012. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madani, Y.A.; Rabih, M.N.A.; Alqarni, F.A.; Ali, Z.; Aldwoah, K.A.; Hleili, M. Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System. Fractal Fract. 2024, 8, 416. https://doi.org/10.3390/fractalfract8070416
Madani YA, Rabih MNA, Alqarni FA, Ali Z, Aldwoah KA, Hleili M. Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System. Fractal and Fractional. 2024; 8(7):416. https://doi.org/10.3390/fractalfract8070416
Chicago/Turabian StyleMadani, Yasir A., Mohammed Nour A. Rabih, Faez A. Alqarni, Zeeshan Ali, Khaled A. Aldwoah, and Manel Hleili. 2024. "Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System" Fractal and Fractional 8, no. 7: 416. https://doi.org/10.3390/fractalfract8070416
APA StyleMadani, Y. A., Rabih, M. N. A., Alqarni, F. A., Ali, Z., Aldwoah, K. A., & Hleili, M. (2024). Existence, Uniqueness, and Stability of a Nonlinear Tripled Fractional Order Differential System. Fractal and Fractional, 8(7), 416. https://doi.org/10.3390/fractalfract8070416