Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System
Abstract
:1. Introduction
2. Mathematical Analysis
- *
- denotes the area of the transverse cross-section,
- *
- denotes Young’s modulus,
- *
- represents the rigidity of the elastic membrane,
- *
- is the mass density,
- *
- F denotes the tension density of the strand,
- *
- represents the height of the membrane in its equilibrium position,
- *
- is the distance between the two strands.
3. Phase Portraits and Chaotic Analysis
3.1. Phase Portraits
3.2. Sensitivity Analysis
3.3. Quasiperiodic and Chaotic Behaviors
4. Traveling Wave Solution of Equation (2)
4.1. Set 1:
4.2. Set 2:
4.3. Set 3:
5. Results and Discussion
5.1. Graphical Presentation
5.2. Influence of Fractional Derivative
5.3. Literature Comparison
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Li, Z.; Cao, J. Qualitative analysis and modulation instability for the extended (3+1)-dimensional nonlinear Schrödinger equation with conformable derivative. Results Phys. 2024, 61, 107713. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z. A Dynamical Analysis and New TravelingWave Solution of the Fractional Coupled Konopelchenko CDubrovsky Model. Fractal Fract. 2024, 8, 341. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z. The dynamical behavior analysis and the traveling wave solutions of the stochastic Sasa-Satsuma Equation. Qual. Theory Dyn. Syst. 2024, 23, 157. [Google Scholar] [CrossRef]
- Gu, M.; Peng, C.; Li, Z. Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation. Aims Math. 2024, 9, 6699–6708. [Google Scholar] [CrossRef]
- Tang, C.; Li, X.; Wang, Q. Mean-field stochastic linear quadratic optimal control for jump-diffusion systems with hybrid disturbances. Symmetry 2024, 16, 642. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, T.; Fang, Y.; Xie, P.; Liu, Y. Harnessing single fluorescent probe to image deoxyribonucleic acid and ribonucleic acid in cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Dong, F.; Hu, X.; Xu, Y.; Wei, W.; Liu, R.; Yu, F.; Fang, W.; Shen, Y.; Zhang, Z. Dynamic tracking of p21 mRNA in living cells by sticky-flares for the visual evaluation of the tumor treatment effect. Nanoscale 2022, 14, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Forinash, K.; Bishop, A.R.; Lomdahl, P.S. Nonlinear dynamics in a double-chain model of DNA. Phys. Rev. B 1991, 43, 10743. [Google Scholar] [CrossRef]
- Okaly, J.B.; Mvogo, A.; Woulache, R.L.; Kofane, T.C. Semi-discrete breather in a helicoidal DNA double chain-model. Wave Motion 2018, 82, 1–15. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Bilal, M.; Younis, M.; Rizvi, S.T.R.; Althobaiti, S.; Makhlouf, M.M. Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique. Chaos Solitons Fractals 2021, 144, 110669. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ahmed, S.; Rizvi, S.T.R.; Ali, K. Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system. Chaos Solitons Fractals 2022, 161, 112307. [Google Scholar] [CrossRef]
- Yao, S.; Mabrouk, S.M.; Inc, M.; Rashed, A.S. Analysis of double-chain deoxyribonucleic acid dynamical system in pandemic confrontation. Results Phys. 2022, 42, 105966. [Google Scholar] [CrossRef]
- Han, T.; Li, Z.; Li, C. Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in optical fibers. Phys. Stat. Mech. Appl. 2023, 615, 128599. [Google Scholar] [CrossRef]
- Qian, X.; Lou, S.-Y. Exact solutions of nonlinear dynamics equation in a new double-chain model of DNA. Commun. Theor. Phys. 2003, 39, 501–505. [Google Scholar]
- Shi, D.; Hamood, U.R.; Ifrah, I.; Vivas-Cortez, M.; Saleem, M.S.; Zhang, X. Analytical study of the dynamics in the double-chain model of DNA. Results Phys. 2023, 52, 106787. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zheng, S. Travelling wave solutions of nonlinear dynamical equations in a double-chain model of DNA. Abstr. Appl. Anal. 2014, 317543. [Google Scholar] [CrossRef]
- Ouahid, L.; Abdou, M.A.; Owyed, S.; Kumar, S. New optical soliton solutions via two distinctive schemes for the DNA Peyrard-Bishop equation in fractal order. Mod. Phys. Lett. B 2021, 35, 2150444. [Google Scholar] [CrossRef]
- Hai, W.-H.; Yi, X.; Fang, J.-S.; Zhang, X.-L.; Huang, W.-L. Chaotic Solitons in Deoxyribonucleic Acid (DNA) Interacting with a Plane Wave. Commun. Theor. Phys. 2021, 36, 503. [Google Scholar]
- Kong, D.; Lou, S.-Y.; Zeng, J. Nonlinear dynamics in a new double chain-model of DNA. Commun. Theor. Phys. 2021, 36, 737–742. [Google Scholar]
- Abdou, M.A.; Ouahid, L.; Al Shahrani, J.S.; Alanazi, M.M.; Kumar, S. New analytical solutions and efficient methodologies for DNA (Double-Chain Model) in mathematical biology. Mod. Phys. Lett. B 2022, 36, 2250124. [Google Scholar] [CrossRef]
- Usman, Y.; Ren, J.; Lanre, A.; Rezazadeh, H. On the multiple explicit exact solutions to the double-chain DNA dynamical system. Math. Methods Appl. Sci. 2023, 46, 6309–6323. [Google Scholar]
- Bilal, M.; Younas, U.; Ren, J. Dynamics of exact soliton solutions in the double-chain model of deoxyribonucleic acid. Math. Methods Appl. Sci. 2021, 44, 13357–13375. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Kharbanda, H. Abundant exact closed-form solutions and solitonic structures for the double-chain deoxyribonucleic acid (DNA) model. Braz. J. Phys. 2021, 51, 1043–1068. [Google Scholar] [CrossRef]
- Han, T.; Jiang, Y. Bifurcation, chaotic pattern and traveling wave solutions for the fractional Bogoyavlenskii equation with multiplicative noise. Phys. Scr. 2024, 99, 035207. [Google Scholar] [CrossRef]
- Shi, D.; Li, Z.; Han, T. New traveling solutions, phase portrait and chaotic pattern for the generalized (2+1)-dimensional nonlinear conformable fractional stochastic Schrödinger equations forced by multiplicative Brownian motion. Results Phys. 2023, 52, 106837. [Google Scholar] [CrossRef]
- Han, T.; Jiang, Y.; Lyu, J. Chaotic behavior and optical soliton for the concatenated model arising in optical communication. Results Phys. 2024, 58, 107467. [Google Scholar] [CrossRef]
- Kolebaje, O.; Bonyah, E.; Mustapha, L. The first integral method for two fractional non-linear biological models. Discret. Contin. Dyn. Syst. Ser. S 2019, 12, 487–502. [Google Scholar] [CrossRef]
- Li, Z.; Peng, C. Bifurcation, phase portrait and traveling wave solution of time-fractional thin-film ferroelectric material equation with beta fractional derivative. Phys. Lett. A 2023, 484, 129080. [Google Scholar] [CrossRef]
- Chakrabarty, A.K.; Roshid, M.M.; Rahaman, M.M.; Abdeljawad, T.; Osman, M.S. Dynamical analysis of optical soliton solutions for CGL equation with Kerr law nonlinearity in classical, truncated M-fractional derivative, beta fractional derivative, and conformable fractional derivative types. Results Phys. 2024, 60, 107636. [Google Scholar] [CrossRef]
- Tripathy, A.; Sahoo, S. New wave dynamics of the time-fractional Kaup-Kupershmidt model of seventh-order arises in shallow water waves. Opt. Quantum Electron. 2024, 56, 472. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Zhang, K.; Jiang, Y.; Rezazadeh, H. Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System. Fractal Fract. 2024, 8, 415. https://doi.org/10.3390/fractalfract8070415
Han T, Zhang K, Jiang Y, Rezazadeh H. Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System. Fractal and Fractional. 2024; 8(7):415. https://doi.org/10.3390/fractalfract8070415
Chicago/Turabian StyleHan, Tianyong, Kun Zhang, Yueyong Jiang, and Hadi Rezazadeh. 2024. "Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System" Fractal and Fractional 8, no. 7: 415. https://doi.org/10.3390/fractalfract8070415
APA StyleHan, T., Zhang, K., Jiang, Y., & Rezazadeh, H. (2024). Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System. Fractal and Fractional, 8(7), 415. https://doi.org/10.3390/fractalfract8070415