Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. An Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.; Li, Z.; Ma, N. Synchronization of discrete fractional-order complex networks with and without unknown topology. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 013112. [Google Scholar] [CrossRef]
- He, J.W.; Zhou, Y. Local/global existence analysis of fractional wave equations with exponential nonlinearity. Bull. Sci. Math. 2023, 189, 103357. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Y. The well-posedness results of solutions in Besov-Morrey spaces for fractional Rayleigh-Stokes equations. Qual. Theory Dyn. Syst. 2024, 23, 43. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y. Globally well-posedness results of the fractional Navier-Stokes equations on the Heisenberg group. Qual. Theory Dyn. Syst. 2024, 23, 52. [Google Scholar] [CrossRef]
- Xi, X.X.; Zhou, Y.; Hou, M. Well-posedness of mild solutions for the fractional Navier-Stokes equations in Besov spaces. Qual. Theory Dyn. Syst. 2024, 23, 15. [Google Scholar] [CrossRef]
- Zhou, Y.; He, J.W. Cauchy problems of nonlinear nonautonomous fractional evolution equations. Rocky Mt. J. Math. 2023, 53, 309–324. [Google Scholar] [CrossRef]
- Zhmud, V.; Dimitrov, L. Using the fractional differential equation for the control of objects with delay. Symmetry 2022, 14, 635. [Google Scholar] [CrossRef]
- Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 2021, 40, 214. [Google Scholar] [CrossRef]
- Van Bockstal, K.; Zaky, M.A.; Hendy, A.S. On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay. Commun. Nonlinear Sci. Numer. Simul. 2022, 115, 106755. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Zhu, Q. Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Solitons Fractals 2022, 156, 111822. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V. A discussion concerning approximate controllability results for Hilfer fractional evolution equations with time delay. Math. Sci. 2022, 18, 195–203. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Ravichandran, C. Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control 2022, 24, 1406–1415. [Google Scholar] [CrossRef]
- Khan, A.; Ain, Q.T.; Abdeljawad, T.; Nisar, K.S. Exact controllability of Hilfer fractional differential system with non-instantaneous impluleses and state dependent delay. Qual. Theory Dyn. Syst. 2023, 22, 62. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Udhayakumar, R. Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay. Chaos Solitons Fractals 2020, 139, 110019. [Google Scholar] [CrossRef]
- Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Agarwal, R.P.; Meehan, M.; O’regan, D. Fixed Point Theory and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Guo, D.; Cho, Y.J.; Zhu, J. Partial Ordering Methods in Nonlinear Problems; Nova Publishers: New York, NY, USA, 2004. [Google Scholar]
- Li, Y. The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. (Chin. Ser.) 1996, 39, 666–672. [Google Scholar]
- Guo, D.J.; Sun, J.X. Ordinary Differential Equations in Abstract Spaces; Shandong Science and Technology: Jinan, China, 1989. [Google Scholar]
- Heinz, H.P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 1983, 7, 1351–1371. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Courier Corporation: New York, NY, USA, 2010. [Google Scholar]
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Zhou, Y.; Jiao, F. Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 2010, 59, 1063–1077. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; He, W.; Wang, L.; Mu, J. Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative. Fractal Fract. 2024, 8, 367. https://doi.org/10.3390/fractalfract8070367
Jin Y, He W, Wang L, Mu J. Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative. Fractal and Fractional. 2024; 8(7):367. https://doi.org/10.3390/fractalfract8070367
Chicago/Turabian StyleJin, Yuhang, Wenchang He, Luyao Wang, and Jia Mu. 2024. "Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative" Fractal and Fractional 8, no. 7: 367. https://doi.org/10.3390/fractalfract8070367
APA StyleJin, Y., He, W., Wang, L., & Mu, J. (2024). Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative. Fractal and Fractional, 8(7), 367. https://doi.org/10.3390/fractalfract8070367