Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. An Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.; Li, Z.; Ma, N. Synchronization of discrete fractional-order complex networks with and without unknown topology. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 013112. [Google Scholar] [CrossRef]
- He, J.W.; Zhou, Y. Local/global existence analysis of fractional wave equations with exponential nonlinearity. Bull. Sci. Math. 2023, 189, 103357. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Y. The well-posedness results of solutions in Besov-Morrey spaces for fractional Rayleigh-Stokes equations. Qual. Theory Dyn. Syst. 2024, 23, 43. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y. Globally well-posedness results of the fractional Navier-Stokes equations on the Heisenberg group. Qual. Theory Dyn. Syst. 2024, 23, 52. [Google Scholar] [CrossRef]
- Xi, X.X.; Zhou, Y.; Hou, M. Well-posedness of mild solutions for the fractional Navier-Stokes equations in Besov spaces. Qual. Theory Dyn. Syst. 2024, 23, 15. [Google Scholar] [CrossRef]
- Zhou, Y.; He, J.W. Cauchy problems of nonlinear nonautonomous fractional evolution equations. Rocky Mt. J. Math. 2023, 53, 309–324. [Google Scholar] [CrossRef]
- Zhmud, V.; Dimitrov, L. Using the fractional differential equation for the control of objects with delay. Symmetry 2022, 14, 635. [Google Scholar] [CrossRef]
- Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 2021, 40, 214. [Google Scholar] [CrossRef]
- Van Bockstal, K.; Zaky, M.A.; Hendy, A.S. On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay. Commun. Nonlinear Sci. Numer. Simul. 2022, 115, 106755. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Zhu, Q. Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Solitons Fractals 2022, 156, 111822. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V. A discussion concerning approximate controllability results for Hilfer fractional evolution equations with time delay. Math. Sci. 2022, 18, 195–203. [Google Scholar] [CrossRef]
- Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Ravichandran, C. Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control 2022, 24, 1406–1415. [Google Scholar] [CrossRef]
- Khan, A.; Ain, Q.T.; Abdeljawad, T.; Nisar, K.S. Exact controllability of Hilfer fractional differential system with non-instantaneous impluleses and state dependent delay. Qual. Theory Dyn. Syst. 2023, 22, 62. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Udhayakumar, R. Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay. Chaos Solitons Fractals 2020, 139, 110019. [Google Scholar] [CrossRef]
- Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Agarwal, R.P.; Meehan, M.; O’regan, D. Fixed Point Theory and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Guo, D.; Cho, Y.J.; Zhu, J. Partial Ordering Methods in Nonlinear Problems; Nova Publishers: New York, NY, USA, 2004. [Google Scholar]
- Li, Y. The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. (Chin. Ser.) 1996, 39, 666–672. [Google Scholar]
- Guo, D.J.; Sun, J.X. Ordinary Differential Equations in Abstract Spaces; Shandong Science and Technology: Jinan, China, 1989. [Google Scholar]
- Heinz, H.P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 1983, 7, 1351–1371. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Courier Corporation: New York, NY, USA, 2010. [Google Scholar]
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Zhou, Y.; Jiao, F. Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 2010, 59, 1063–1077. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; He, W.; Wang, L.; Mu, J. Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative. Fractal Fract. 2024, 8, 367. https://doi.org/10.3390/fractalfract8070367
Jin Y, He W, Wang L, Mu J. Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative. Fractal and Fractional. 2024; 8(7):367. https://doi.org/10.3390/fractalfract8070367
Chicago/Turabian StyleJin, Yuhang, Wenchang He, Luyao Wang, and Jia Mu. 2024. "Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative" Fractal and Fractional 8, no. 7: 367. https://doi.org/10.3390/fractalfract8070367
APA StyleJin, Y., He, W., Wang, L., & Mu, J. (2024). Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative. Fractal and Fractional, 8(7), 367. https://doi.org/10.3390/fractalfract8070367