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Abstract: Because of the prevalent time-delay characteristics in real-world phenomena, this paper
investigates the existence of mild solutions for diffusion equations with time delays and the Hilfer
fractional derivative. This derivative extends the traditional Caputo and Riemann–Liouville fractional
derivatives, offering broader practical applications. Initially, we constructed Banach spaces required
to handle the time-delay terms. To address the challenge of the unbounded nature of the solution
operator at the initial moment, we developed an equivalent continuous operator. Subsequently,
within the contexts of both compact and non-compact analytic semigroups, we explored the existence
and uniqueness of mild solutions, considering various growth conditions of nonlinear terms. Finally,
we presented an example to illustrate our main conclusions.
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1. Introduction

Differential equations with fractional derivatives play a pivotal role across a wide
spectrum of fields such as the natural sciences, engineering, biological sciences, finance,
and physics, capturing the interest of numerous scholars [1–7]. The phenomenon of time
delay, a ubiquitous occurrence in the fabric of real-life scenarios, has spurred a significant
body of research. In recent years, growing interest has been observed in exploring the
characteristics of solutions to delay differential equations, particularly focusing on the exis-
tence and stability of solutions involving the Caputo fractional derivative, as highlighted
in studies [8–10].

The derivative, known as the Hilfer derivative, extends numerous derivatives includ-
ing the Caputo derivative and the Riemann–Liouville derivative, offering a broad range
of application value. Compared with the others, there is relatively little research on the
existence and controllability of solutions to delay differential equations with the Hilfer
fractional derivative. Kavitha and Vijayakumar [11] studied the existence of mild solutions
to the following equation in a Hilbert space H{

Dµ,ν
0+ u(t) = Au(t) + A1u(t − τ) + Bu(t) + f (t, u(t − τ)), t ∈ (0, ∞),

I(1−µ)(1−ν)
0+ u(t) = φ(t), t ∈ [−τ, 0],

where µ ∈ [0, 1] and ν ∈ (0, 1), B is a bounded operator, K is another Hilbert space, f is

continuous, and there exist a positive constant ν1 ∈ (0, ν)andm ∈ L
1

ν1 (K,R+), such that
for every u1, u2 ∈ H, ∥ f (t, u1)− f (t, u2)∥≤ mt(1−µ)(1−ν)∥ u1 − u2 ∥H . The existence and
controllability of mild solutions to fractional differential equations with other types of
delays and the Hilfer fractional derivative can be found in [12–14].
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Motivated by the literature above, we consider the existence of mild solutions of the
following Dirichlet-type initial-boundary-value problem

Dµ,ν
0+ u(x, t) = Au(x, t) + f (x, t, u (x, t − τ0), u(x, t − τ1), · · · ,

u(x, t − τn)), x ∈ Ω, t ∈(0, b],
u|∂Ω = 0,
I(1−µ)(1−ν)
0+ u(x, 0+) = φ(x, 0), x ∈ Ω,

u(x, t) = t(µ−1)(1−ν)φ(x,t)
Γ(µ(1−ν)+ν)

, x ∈ Ω, t ∈ [−r, 0),

(1)

where Dµ,ν
0+ represents the Hilfer fractional derivative, µ, ν ∈ (0, 1), I(1−µ)(1−ν)

0+ u(x, 0+) is

the limit of I(1−µ)(1−ν)
0+ u(x, t) as t → 0+ , b > 0, Ω ⊂ Rn with a smooth boundary ∂Ω. f

and φ are given functions, τ0 = 0, τ1, τ2, · · · , τn ∈ [0, r], r > 0.

Au(x, t) =
n

∑
p=1

n

∑
q=1

∂xp

[
apq(x)∂xq u(x, t)

]
− b(x)u(x, t), (2)

where apq and b are real valued functions that satisfy

apq ∈ C1(Ω), 1 ≤ p, q ≤ n,

n

∑
p,q=1

apq(x)ϑpϑq ≥ ς|ϑ|2, ϑ ∈ Rn, x ∈ Ω,

b ∈ C
(
Ω
)
, b(x) ≥ b0 > 0, x ∈ Ω,

with some constant ς > 0.
The introduction of n delay terms increases the complexity when studying the exis-

tence of solutions. To address this problem, we need to consider the specific continuous
function space Cn

[−r,0] = C[−r,0] × C[−r,0] × · · · × C[−r,0]. Because of the unboundedness and
continuity of solutions to equations containing Hilfer fractional derivatives at zero, we
examine the initial value of the Hilfer fractional diffusion equation with delay in the form

of t(µ−1)(1−ν)φ(x,t)
Γ(µ(1−ν)+ν)

on the interval [−r, 0), and introduce a new solution operator to ensure
the meaningfulness of the studied equation’s solutions at zero.

In the main results, we initially assume the compactness of the analytic semigroup
and relax the continuity condition for the function f required by reference [11], demanding
instead that f be continuous in other variables for almost all of the time variables. Addition-

ally, we assume that the norm of f is governed by the L
1

ν1 ((0, b], R+) norm of delayed terms
with ν1 ∈ [0, ν). Based on these assumptions, we employ the Leray–Schauder fixed-point
theorem to demonstrate the existence of mild solutions. On this basis, we do not impose
compactness on the analytic semigroup and we stipulate that the measure of f is controlled
by the measures of delayed terms. Then, we utilize a non-compact measure approach to
further prove the existence of mild solutions. Lastly, we assume that the norms of f satisfy
a Lipschitz condition in another space Y. Following this, we apply the Banach contraction
mapping principle to prove the existence and uniqueness of mild solutions. However, the
interval µ ∈ [0, 1] in [11] is not applicable in this study because the proof of the strong
continuity of Rµ,ν(t) = t(1−µ)(1−ν)Sµ,ν(t) necessitates the condition that µ is not zero. For
simplicity, this paper restricts µ to the interval (0, 1). Moreover, Theorem 3.3 in the Gu and
Trujillo [15] represents a special case of Theorem 2 in this paper when f has no time delays.

The structure of this manuscript is articulated as follows. Section 2 delineates the
requisite space and norm pertinent to this study, alongside a review of some foundational
results. Subsequently, it proceeds to articulate the solution operator for Equation (4).
Section 3 leverages fixed-point theorems, under specified conditions, to establish the
existence of a solution for Equation (4). An illustrative example that underscores the
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derived outcomes is presented in Section 4. Concluding the discourse, Section 5 offers an
all-encompassing recapitulation of the paper’s content.

2. Preliminaries

Let X = L2(Ω) be a Banach space, where the norm is ∥ · ∥. The space of all continuous
functions maps J into X is denoted by CJ = C(J, X), where J is an interval and J ⊂ R.
For arbitrary y ∈ CJ and closed interval J, we define the norm ∥ y ∥∞ = supt∈J ∥ y(t) ∥.
The Lebesgue measurable functions ω : J → R with 1 ≤ p ≤ ∞ construct a Banach space,
which is written as Lp(J, R).

Define

Y =

{
u ∈ C(0,b], lim

t→0
t(1−µ)(1−ν)u(t) is a finite constant

}
,

where the norm ∥ · ∥Y is

∥ u ∥Y = sup
t∈(0,b]

∥ t(1−µ)(1−ν)u(t) ∥.

Then, with the norm ∥ · ∥Y, Y becomes a Banach space.

Definition 1 ([16]). The Riemann–Liouville derivative of the real function f is defined by

Dp
a+ f (t) =

1
Γ(n − p)

dn

dtn

∫ t

a

f (s)

(t − s)p+1−n ds, t > a, n = [p] + 1,

where p > 0, and Γ(·) denote the Gamma function.

Definition 2 ([16]). The fractional integral of the real function f is defined by

Ip
a+ f (t) =

1
Γ(p)

∫ t

a

f (s)

(t − s)1−p ds, t > a,

where p > 0, and Γ(·) denotes the Gamma function.

Definition 3 ([17]). The definition of the generalized fractional Riemann–Liouville derivative with
order µ, ν ∈ (0, 1) and lower limit a is

Dµ,ν
a+ f (t) = Iµ(1−ν)

a+
d
dt

I(1−µ)(1−ν)
a+ f (t),

provided the right-hand side is well-defined.

Definition 4 ([18]). Let ΩX ⊂ X be bounded. Then, the Kuratowski measure of noncompactness
is defined by

λ(S) = inf

{
sup{|x − y|, x, y ∈Si }|i = 1, · · · , n, and S =

n⋃
i=1

Si

}
,

where S ⊂ ΩX .

Lemma 1 ([19]). Let S1, S2 ⊂ X, and S1, S2 be bounded. Furthermore, let c be a real number. The
noncompactness measure possesses the following properties

(i) S1 ⊂ S2 implies that λ(S1) ≤ λ(S2);
(ii) λ(cS1) = |c|λ(S1);
(iii) λ(coS1) = λ(S1), where coS1 represents the convex closure of S1.
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Lemma 2 ([20]). Suppose B ⊂ X is bounded. Subsequently, there is a countable subset B0 ⊂ B,
satisfying λ(B) ≤ 2λ(B0).

Lemma 3 ([21]). Let W ⊂ CJ , where W is both equicontinuous and bounded. Subsequently,
λ(W(t)) is continuous for t ∈ J, and λ(W) = maxt∈J λ(W(t)).

Lemma 4 ([22]). Let W = {wn}∞
n=1 ⊂ CJ be countable and bounded. Assuming there exists a

function h ∈ L1(J, R+), such that

∥ wn(t) ∥≤ h(t), for n ∈ N and a.e. t ∈ J.

Then, we have

λ

({∫
J

wn(t)dt : n ∈ N
})

≤ 2
∫

J
λ(W(t))dt,

where λ(W(t)) is the Lebesgue integral on J.

Definition 5 ([23]). Let S ⊂ X be nonempty. If for any bounded set B ⊂ S and continuous
mapping T : S → X , there exists a constant k ∈ [0, 1) such that

λ(T(B)) ≤ kλ(B),

then T is called k-set-contractive.

We define A : D(A) ⊂ X → X with domain D(A) = H1
0(Ω) ∩ H2(Ω) (see [24]) and

(Au)(t)x = Au(x, t). Then, A generates an analytic semigroup {Q(t)}t≥0 on X. Without
losing generality, we assume that {Q(t)}t≥0 is a uniformly bounded linear operator. Thus,
there exists M ≥ 1, such that

M := sup
t∈[0,+∞)

∥ Q(t) ∥ < ∞. (3)

Set u0t(τ0)(x) = u(t − τ0)(x) = u(x, t − τ0), u1t(τ1)(x) = u(t − τ1)(x) = u(x, t − τ1),
· · · , unt(τn)(x) = u(t − τn)(x) = u(x, t − τn) and f (t, u(t − τ0), u(t − τ1), · · · , u(t − τn))(x)
= f (x, t, u(x, t − τ0), u(x, t − τ1), · · · , u(x, t − τn)), then (1) can be formulated in an abstract
Cauchy problem form as

Dµ,ν
0+ u(t) = Au(t) + f (t, u0t , u1t , · · · , unt), t ∈ (0, b],

I(1−µ)(1−ν)
0+ u(0+) = φ(0),

u(t) = t(µ−1)(1−ν)φ(t)
Γ(µ(1−ν)+ν)

, t ∈ [−r, 0),
(4)

where f : [0, b]× C[0,b] × Cn
[−r,0] → X is the given functions satisfying some assumptions,

φ ∈ C[−r,0].

Lemma 5 ([25]). For a measurable function G : [0, b] → X , if ∥ G ∥ is Lebesgue integrable, then
G is called the Bochner integrable.

The equivalent integral equation for Equation (4) is given by

u(t) =


φ(0)

Γ(µ(1−ν)+ν)
t(µ−1)(1−ν) + 1

Γ(ν)

∫ t
0 (t − s)ν−1[Au+

f (s, u0s , u1s , · · · , uns)]ds, t ∈(0, b],
t(µ−1)(1−ν)φ(t)
Γ(µ(1−ν)+ν)

, t ∈ [−r, 0).

(5)

Similar to [15], we obtain the following result.
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Lemma 6. If integral Equation (5) holds, then we have

u(t) =

{
Sµ,ν(t)φ(0) +

∫ t
0 Kν(t − s) f (s, u0s , u1s , · · · , uns)ds, t ∈ (0, b],

t(µ−1)(1−ν)φ(t)
Γ(µ(1−ν)+ν)

, t ∈ [−r, 0).
(6)

where
Sµ,ν(t) = Iµ(1−ν)

0+ Kν(t), Kν(t) = tν−1Pν(t)

with
Pν(t) =

∫ ∞

0
νθMν(θ)Q(tνθ)dθ.

The wright function Mν(θ), where ν ∈ (0, 1) and θ ∈ C, is defined as the infinite series

Mν(θ) =
∞

∑
n=1

(−θ)n−1

(n − 1)!Γ(1 − νn)
.

This function satisfies the integral equality∫ ∞

0
θϱ Mν(θ)dθ =

Γ(1 + ϱ)

Γ(1 + νϱ)
, θ ≥ 0.

Definition 6. We define the mild solution of Equation (4) as a function u ∈ C(0,b] for which u
satisfies

u(t) =

{
Sµ,ν(t)φ(0) +

∫ t
0 Kν(t − s) f (s, u0s , u1s , · · · , uns)ds, t ∈ (0, b],

t(µ−1)(1−ν)φ(t)
Γ(µ(1−ν)+ν)

, t ∈ [−r, 0).

Lemma 7 ([15]). For any t > 0, by the continuity of Q(t), we know that Pν(t) is continuous
according to the uniform operator topology.

Lemma 8 ([15]). For any fixed t > 0, {Kν(t)}t>0 and {Sµ,ν(t)}t>0 are bounded linear operators,
which means that, for any x ∈ X

∥ Kν(t)x ∥≤Mtν−1

Γ(ν)
∥ x ∥ and ∥Sµ,ν(t)x ∥≤ Mt(µ−1)(1−ν)

Γ(µ(1 − ν) + ν)
∥ x ∥.

Lemma 9. Let Rµ,ν(t) = t(1−µ)(1−ν)Sµ,ν(t), t > 0. Thus {Rµ,ν(t)}t>0 is continuous according
to the uniform operator topology.

Proof. Let ε > 0 be fixed. By Lemma 7, we know that for ∀ t0 > 0, there exists δ > 0, such
that

∥ Pν(t2)− Pν(t1)∥≤
Γ(ν + µ(1 − ν))

Γ(ν)
ε, (7)

for t2 > t1 ≥ t0, and |t2 − t1|< δ .
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Subsequently, we have

∥ Rµ,ν(t2)− Rµ,ν(t1) ∥

=
1

Γ(µ(1 − ν))
∥ t(1−µ)(1−ν)

2

∫ t2

0
(t2 − s)µ(1−ν)−1sν−1Pν(s)ds

−t(1−µ)(1−ν)
1

∫ t1

0
(t1 − s)µ(1−ν)−1sν−1Pν(s)ds ∥

=
1

Γ(µ(1 − ν))

∫ 1

0
(1 − γ)µ(1−ν)−1γν−1∥ Pν(t2γ)− Pν(t1γ) ∥dγ,

and ∫ 1

0
(1 − γ)µ(1−ν)−1γν−1dγ = B(ν,µ(1 − ν)) =

Γ(ν)Γ(µ(1 − ν))

Γ(ν + µ(1 − ν))
,

where B(·, ·) represents the Beta function (see [26]). Therefore, we obtain

∥ Rµ,ν(t2)− Rµ,ν(t1) ∥≤ ε.

That is, by the arbitrariness of t0, Rµ,ν(t)(t > 0) is continuous in the uniform operator
topology. □

Remark 1. {Rµ,ν(t)}t>0 is strongly continuous, that is,

∥ Rµ,ν(t2)x − Rµ,ν(t1)x ∥→ 0 as t1 → t2,

for any t1, t2 ∈ (0, b] and ∀ x ∈ X.

Remark 2. In the context of the Beta function B(ν,µ(1 − ν)), both µ and ν are required to be
strictly positive. Therefore, in this article, order µ, ν ∈ (0, 1).

Set u(t) = t(µ−1)(1−ν)v(t). Due to the limit of t(1−µ)(1−ν)Sµ,ν(t)φ(0) being equal to
φ(0)

Γ(µ(1−ν)+ν)
as t → 0+ , for any v ∈ C[−r,b] we set

(Tv)(t) =


t(1−µ)(1−ν)

[
Sµ,ν(t)φ(0) +

∫ t
0 Kν(t − s) f ( s, u0s , u1s , · · · ,

uns)ds], t ∈ (0, b],
φ(t)

Γ(µ(1−ν)+ν)
, t ∈ [−r, 0].

Obviously, u is a mild solution of Equation (4), which is equivalent to T has a fixed point
on C[−r,b].

Lemma 10 ([23]). Let B ⊂ X be a bounded closed convex set and that the operator T : B → B is
k-set-contractive. Then, T has a fixed point in B.

Lemma 11 ([23]). For completely continuous mapping T : D → D , where D is a convex subset of
X containing 0. One of the following must hold: T has a fixed point, or the set {z ∈ D, z = ξT(z)}
is unbounded, where ξ ∈ (0, 1).

3. Main Results

In order to obtain the existence of mild solutions for Equation (4), we provide some
assumptions.

(H1) Q(t) is compact for each t > 0.
(H2) The function f (t, ·, ···, ·) : C[0,b] × Cn

[−r,0] → X is continuous for almost all t ∈
(0, b]. Additionally, for each u0t ∈ C[0,b], ukt ∈ C[−r,0](k = 1, 2, ···, n), the function f (·, u0t , u1t ,
···, unt) : (0, b] → X is strongly measurable.
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(H3) There exists constants ν1 ∈ [0, ν) and m ∈ L
1

ν1 ((0, b], R+), such that

Iν
0+m ∈ C

(
(0, b], R+

)
, lim

t→0+
t(1−µ)(1−ν) Iν

0+m(t) = 0,

and
∥ f (t, u0t , u1t , ···, unt)∥≤ m(t),

for all u0t ∈ C[0,b], ukt ∈ C[−r,0](k = 1, 2, ···, n) and almost all t ∈ [0, b].
(H4) For any bounded, equicontinuous and countable sets Bk ⊂ X(k = 0, 1, ···, n),

some constants Lk > 0 (k = 0, 1, ···, n) exist, such that

λ( f (t, B0, B1, ···, Bn)) ≤
n

∑
k=0

Lkλ(Bk), t ∈ (0, b].

(H5) Assume that f : [0, b]× C[0,b] × Cn
[−r,0] → X is a continuous function. There exists

a non-negative continuous function ρk(·)(k = 0, 1, ···, n), satisfying

∥ f (t, u0t , u1t , ···, unt)− f
(
t, u′

0t
, u′

1t
, ···, u′

nt

)
∥≤

n

∑
k=0

ρk(t)∥ u − u′ ∥Y, t ∈ (0, b],

for any u0t , u′
0t
∈ C[0,b], ukt , u′

kt
∈ C[−r,0](k = 1, 2, ···, n).

Let Bk0= {v ∈C[−r,b], ∥ v ∥∞ ≤ k0}. Then, Bk0 ⊂ C[−r,b] is a bounded, closed, and
convex set.

Theorem 1. Under the assumption that condition (H1)–(H3) holds, Cauchy Equation (4) has a
mild solution.

Proof. In view of Lemma 8, for t ∈ (0, b], it follows that

∥ t(1−µ)(1−ν)Sµ,ν(t)φ(0) ∥≤ M
Γ(µ(1 − ν) + ν)

∥ φ ∥∞. (8)

For v ∈ Bk0 , according to (H2), and ukt(k = 0, 1, ···, n) is continuous in t, and we have

(t − s)ν−1 ∈ L
1

1−ν1 [0, t] for t ∈ (0, b] and ν1 ∈ [0, ν). Considering

a =
ν − 1
1 − ν1

∈ (−1, 0), M1 = ∥ m ∥
L

1
ν1 [0,b]

.

By applying (H3) and Hölder inequality, for t ∈ (0, b], we derive

t(1−µ)(1−ν)
∫ t

0
∥ (t − s)ν−1 f (s, u0s , u1s , ···, uns) ∥ds

≤ t(1−µ)(1−ν)

(∫ t

0
(t − s)

ν−1
1−ν1 ds

)1−ν1

∥ m ∥
L

1
ν1 [0,t]

≤ M1

(1 + a)1−ν1
b2+a−µ−ν−ν1−aν1+µν.

(9)

We obtain by Lemma 8 and (9) that

t(1−µ)(1−ν)
∫ t

0
∥ Kν(t − s) f (s, u0s , u1s , ···, uns) ∥ds

≤ Mb(1−µ)(1−ν)

Γ(ν)

∫ t

0
∥ (t − s)ν−1 f (s, u0s , u1s , ···, uns) ∥ds

≤ MM1

Γ(ν)(1 + a)1−ν1
b2+a−µ−ν−ν1−aν1+µν, for t ∈ (0, b].

(10)
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Consequently, ∥ Kν(t − s) f (s, u0s , u1s , ···, uns) ∥ is a Lebesgue integrable for s ∈ [0, t] and
t ∈ (0, b]. By Lemma 5, we know that Kν(t − s) f (s, u0s , u1s , ···, uns) is a Bochner integrable
for s ∈ [0, t] and t ∈ (0, b]. Therefore, operator T is well-defined in [0, b].

Firstly, we demonstrate that T is a completely continuous operator.
Assume {vn} ⊆ Bk0 with vn → v on Bk0 , where vn = t(1−µ)(1−ν)un, v = t(1−µ)(1−ν)u.

Then, by ( H2) and the fact that un,kt → ukt(k = 0, 1, ···, n) for t ∈ (0, b], we have

f (s, un,0s , un,1s , ···, un,ns) → f (s, u0s , u1s , ···, uns), a.e. t ∈ (0, b], as n → ∞.

Considering that

(t − s)ν−1∥ f (s, un,0s , un,1s , ···, un,ns)− f (s, u0s , u1s , ···, uns) ∥

≤ (t − s)ν−12m(s), a.e.in [0, t),

by the dominated convergence theorem, we have

∥ (Tvn)(t)− (Tv)(t) ∥

≤ M
Γ(ν)

t(1−µ)(1−ν)
∫ t

0
(t − s)ν−1∥ f (s, un,0s , un,1s , · · · , un,ns)

− f (s, u0s , u1s , · · · , uns) ∥ds

→ 0, as n → ∞.

Thus, we know that T is continuous.
Subsequently, we prove that

{
Tv, v ∈ Bk0

}
is relatively compact. It suffices to demon-

strate that
{

Tv, v ∈ Bk0

}
is uniformly bounded and equicontinuous, and

{
(Tv)(t), v ∈ Bk0

}
is relatively compact in X for any t ∈ (0, b].

According to (H3), there is a constant k0 > 0, such that

M

(
∥ φ ∥∞

Γ(µ(1 − ν) + ν)
+ sup

t∈[0,b]

{
t(1−µ)(1−ν) Iν

0+m(t)
})

≤ k0.

For t ∈ [0, b], by ( H3) and Lemma 8, we obtain

∥ (Tv)(t) ∥

≤ t(1−µ)(1−ν)

[
∥ Sµ,ν(t)φ(0) ∥ +∥

∫ t

0
Kν(t − s) f (s, u0s , u1s , ···, uns)ds ∥

]
≤ M ∥ φ ∥∞

Γ(µ(1 − ν) + ν)
+

Mt(1−µ)(1−ν)

Γ(ν)

∫ t

0
(t − s)

ν−1
∥ f (s, u0s , u1s , ···, uns) ∥ds

≤ M

(
∥ φ ∥∞

Γ(µ(1 − ν) + ν)
+ sup

t∈[0,b]

{
t(1−µ)(1−ν) Iν

0+m(t)
})

≤ k0.

Hence, ∥ Tv ∥ ≤ k0, for any v ∈ Bk0 , which means
{

Tv, v ∈ Bk0

}
is uniformly bounded.

For v ∈ Bk0 , when t1 = 0, t2 ∈ (0, b], we obtain

∥ (Tv)(t2)− (Tv)(0) ∥

= t(1−µ)(1−ν)
2 ∥ Sµ,ν(t2)φ(0) +

∫ t2

0
Kν(t2 − s) f (s, u0s , u1s , ···, uns)ds ∥

≤ t(1−µ)(1−ν)
2

[
∥ Sµ,ν(t2) ∥ ∥ φ ∥∞ +

M
Γ(ν)

∫ t2

0
(t2 − s)ν−1m(s)ds

]
→ 0 as t2 → 0.
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Take v ∈ Bk0 , and t1, t2 ∈ (0, b], we obtain

∥ (Tv)(t2)− (Tv)(t1) ∥
= ∥ t(1−µ)(1−ν)

2

[
Sµ,ν(t2)φ(0) +

∫ t2
0 Kν(t2 − s) f (s, u0s , u1s , ···, uns)ds

]
−t(1−µ)(1−ν)

1

[
Sµ,ν(t1)φ(0) +

∫ t1
0 Kν(t1 − s) f (s, u0s , u1s , ···, uns)ds

]
∥

≤∥t(1−µ)(1−ν)
2 Sµ,ν(t2)φ(0)− t(1−µ)(1−ν)

1 Sµ,ν(t1)φ(0) ∥
+∥

∫ t2
t1

t(1−µ)(1−ν)
2 (t2 − s)ν−1Pν(t2 − s) f (s, u0s , u1s , ···, uns)ds ∥

+∥
∫ t1

0 t(1−µ)(1−ν)
2 (t2 − s)ν−1Pν(t2 − s) f (s, u0s , u1s , ···, uns)ds

−
∫ t1

0 t(1−µ)(1−ν)
1 (t1 − s)ν−1Pν(t2 − s) f (s, u0s , u1s , ···, uns)ds ∥

+∥
∫ t1

0 t(1−µ)(1−ν)
1 (t1 − s)ν−1Pν(t2 − s) f (s, u0s , u1s , ···, uns)ds

−
∫ t1

0 t(1−µ)(1−ν)
1 (t1 − s)ν−1Pν(t1 − s) f (s, u0s , u1s , ···, uns)ds ∥

≤∥
[
t(1−µ)(1−ν)
2 Sµ,ν(t2)− t(1−µ)(1−ν)

1 Sµ,ν(t1)
]

φ(0) ∥

+ M
Γ(ν)∥

∫ t2
t1

t(1−µ)(1−ν)
2 (t2 − s)ν−1m(s)ds ∥

+ M
Γ(ν)

∫ t1
0

[
t(1−µ)(1−ν)
1 (t1 − s)ν−1 − t(1−µ)(1−ν)

2 (t2 − s)ν−1
]
m(s)ds

+∥
∫ t1

0 t(1−µ)(1−ν)
1 (t1 − s)ν−1Pν(t2 − s) f (s, u0s , u1s , ···, uns)ds ∥

−∥
∫ t1

0 t(1−µ)(1−ν)
1 (t1 − s)ν−1Pν(t1 − s)] f (s, u0s , u1s , ···, uns)ds ∥

≤ I1 + I2 + I3 + I4,

where

I1=∥t(1−µ)(1−ν)
2 Sµ,ν(t2)− t(1−µ)(1−ν)

1 Sµ,ν(t1)∥∥ φ ∥∞

=∥Rµ,ν(t2)− Rµ,ν(t1)∥∥ φ ∥∞,

I2=
M

Γ(ν)
∥
∫ t2

0
t(1−µ)(1−ν)
2 (t2 − s)ν−1m(s)ds

−
∫ t1

0
t(1−µ)(1−ν)
1 (t1 − s)ν−1m(s)ds ∥,

I3=
2M
Γ(ν)

∫ t1

0

[
t(1−µ)(1−ν)
1 (t1 − s)ν−1 − t(1−µ)(1−ν)

2 (t2 − s)ν−1
]
m(s)ds,

I4= ∥
∫ t1

0
t(1−µ)(1−ν)
1 (t1 − s)ν−1Pν(t2 − s) f (s, u0s , u1s , ···, uns)ds ∥

−∥
∫ t1

0
t(1−µ)(1−ν)
1 (t1 − s)ν−1Pν(t1 − s) f (s, u0s , u1s , ···, uns)ds ∥.

It is obvious that I1 → 0 as t1 → t2 by Remark 1. By condition (H3), it can be deduced that
limt1→t2 I2 = 0. Noting that[

t(1−µ)(1−ν)
1 (t1 − s)ν−1 − t(1−µ)(1−ν)

2 (t2 − s)ν−1
]
m(s)

≤ t(1−µ)(1−ν)
1 (t1 − s)ν−1m(s),

and
∫ t1

0 t(1−µ)(1−ν)
1 (t1 − s)ν−1m(s)ds exists, then by the dominated convergence theorem,

we obtain∫ t1

0

[
t(1−µ)(1−ν)
1 (t1 − s)ν−1 − t(1−µ)(1−ν)

2 (t2 − s)ν−1
]
m(s)ds → 0, as t1 → t2,
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then, it can be deduced that limt1→t2 I3 = 0. For sufficiently small ε > 0, we have

I4≤
∫ t1−ε

0
t(1−µ)(1−ν)
1 (t1 − s)ν−1∥ Pν(t2 − s)− Pν(t1 − s) ∥

∥ f (s, u0s , u1s , ···, uns) ∥ ds

+
∫ t1

t1−ε
t(1−µ)(1−ν)
1 (t1 − s)ν−1∥ Pν(t2 − s)− Pν(t1 − s) ∥

∥ f (s, u0s , u1s , ···, uns) ∥ ds

≤ t(1−µ)(1−ν)
1

∫ t1

0
(t1 − s)ν−1m(s)ds sup

s∈[0,t1−ε]

∥ Pν(t2 − s)− Pν(t1 − s) ∥

+
2M
Γ(ν)

t(1−µ)(1−ν)
1

∫ t1

t1−ε
(t1 − s)ν−1m(s)ds

≤ I41 + I42 + I43,

where
I41 = k0Γ(ν)

M sup
s∈[0,t1−ε]

∥ Pν(t2 − s)− Pν(t1 − s) ∥,

I42 = 2M
Γ(ν)∥ t(1−µ)(1−ν)

1

∫ t1
0 (t1 − s)ν−1m(s)ds ∥

− 2M
Γ(ν)∥ (t1 − ε)(1−µ)(1−ν) ∫ t1−ε

0 (t1 − ε − s)ν−1m(s)ds ∥,

I43 = 2M
Γ(ν)

∫ t1−ε
0 (t1 − ε)(1−µ)(1−ν)(t1 − ε − s)ν−1m(s)ds

− 2M
Γ(ν)

∫ t1−ε
0 t(1−µ)(1−ν)

1 (t1 − s)ν−1m(s)ds.

By Lemma 7, we know that I41 → 0 as t1 → t2 . Similarly, one can establish the
proof for I2 → 0 and I3 → 0 , then, we have I42 → 0 and I43 → 0 as ε → 0 . Therefore,
I4 → 0 independently of v ∈ Bk0 as t1 → t2 , ε → 0 . Thus, ∥ (Tv)(t2) − (Tv)(t1)∥→ 0
independently of v ∈ Bk0 as t1 → t2 , which means that

{
Tv, v ∈ Bk0

}
is equicontinuous.

Now, we need to establish that for any t ∈ [−r, b],
{
(Tv)(t), v ∈ Bk0

}
is relatively

compact in X.
Clearly, for any t ∈ [−r, 0],

{
(Tv)(t), v ∈ Bk0

}
is relatively compact in X. Assume

t ∈ (0, b] is fixed. For ∀ δ > 0 and ∀ ε ∈ (0, t), operator Tε,δ is defined on Bk0 as follows

(Tε,δv)(t)=
t(1−µ)(1−ν)ν

Γ(µ(1 − ν))

∫ t

0

∫ ∞

0
(t − s)µ(1−ν)−1sν−1θMν(θ)Q(sνθ)φ(0)dθds

+t(1−µ)(1−ν)
∫ t−ε

0

∫ ∞

δ
(t − s)ν−1νθMν(θ)Q

(
(t − s)νθ

)
f (s, u0s , u1s , ···, uns)dθds

=
t(1−µ)(1−ν)ν

Γ(µ(1 − ν))

∫ t

0

∫ ∞

0
(t − s)µ(1−ν)−1sν−1θMν(θ)

[Q(ενδ)Q(sνθ − ενδ)]φ(0)dθds

+t(1−µ)(1−ν)
∫ t−ε

0

∫ ∞

δ
(t − s)ν−1νθMν(θ)

[
Q(ενδ)Q

(
(t − s)νθ − ενδ

)]
f (s, u0s , u1s , ···, uns)dθds

= Q(ενδ)
t(1−µ)(1−ν)ν

Γ(µ(1 − ν))

∫ t

0

∫ ∞

0
(t − s)µ(1−ν)−1sν−1θMν(θ)

Q(sνθ − ενδ)φ(0)dθds

+Q(ενδ)t(1−µ)(1−ν)
∫ t−ε

0

∫ ∞

δ
(t − s)ν−1νθMν(θ)Q

(
(t − s)νθ − ενδ

)
f (s, u0s , u1s , ···, uns)dθds,
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where v ∈ Bk0 . By (H1), we know that Q(ενδ)(ενδ > 0) is compact, then we obtain that the
set
{
(Tε,δv)(t), v ∈ Bk0

}
is relatively compact in X for ∀ δ > 0 and ∀ ε ∈ (0, t). Furthermore,

for each v ∈ Bk0 , we have

∥ (Tv)(t)−(Tε,δv)(t) ∥

= νt(1−µ)(1−ν)

∥
∫ t

0

∫ δ

0
θ(t − s)ν−1Mν(θ)Q

(
(t − s)νθ

)
f (s, u0s , u1s , · · · , uns)dθds

+
∫ t

0

∫ ∞

δ
θ(t − s)ν−1Mν(θ)Q

(
(t − s)νθ

)
f (s, u0s , u1s , · · · , uns)dθds

−
∫ t−ε

0

∫ ∞

δ
θ(t − s)ν−1Mν(θ)Q

(
(t − s)νθ

)
f (s, u0s , u1s , · · · , uns)dθds ∥

≤ νt(1−µ)(1−ν)[
∥
∫ t

0

∫ δ

0
θ(t − s)ν−1Mν(θ)Q

(
(t − s)νθ

)
f (s, u0s , u1s , · · · , uns)dθds ∥

+∥
∫ t

t−ε

∫ ∞

δ
θ(t − s)ν−1Mν(θ)Q

(
(t − s)νθ

)
f (s, u0s , u1s , · · · , uns)dθds ∥

]
≤ νMb(1−µ)(1−ν)

[(∫ t

0
(t − s)

ν−1
1−ν1 ds

)1−ν1

∥ m ∥
L

1
ν1 [0,t]

∫ δ

0
θMν(θ)dθ

+

(∫ t

t−ε
(t − s)

ν−1
1−ν1 ds

)1−ν1

∥ m ∥
L

1
ν1 [t−ε,t]

∫ ∞

0
θMν(θ)dθ

]

≤ νMM1b2+a−µ−ν−ν1−aν1+µν

(1 + a)1−ν1

∫ δ

0
θMν(θ)dθ

+
νMM1ε(1+a)(1−ν1)b(1−µ)(1−ν)

Γ(1 + ν)(1 + a)1−ν1
.

Consequently, for t > 0, there are relatively compact sets close to
{
(Tv)(t), v ∈ Bk0

}
arbitrarily. This implies that the set

{
(Tv)(t), v ∈ Bk0

}
is also relatively compact in X.

The relative compactness of
{

Tv, v ∈ Bk0

}
follows from the Arzela–Ascoli theorem.

This, combined with the continuity of T, leads to the conclusion that T : Bk0 → Bk0 is
completely continuous.

We set
M2 =

{
v ∈ Bk0 , v = ηTv, η ∈ (0, 1)

}
.

Obviously, 0 ∈ M2. For v ∈ M2, t ∈ (0, b], we have

∥ v(t) ∥≤ ηt(1−µ)(1−ν)

[
∥ Sµ,ν(t)φ(0) ∥ +∥

∫ t

0
Kν(t − s) f (s, u0s , u1s , ···, uns)ds ∥

]
≤ η

[
M

Γ(µ(1 − ν) + ν)
∥ φ ∥∞ +

MM1

Γ(ν)(1 + a)1−ν1
b2+a−µ−ν−ν1−aν1+µν

]

<
M

Γ(µ(1 − ν) + ν)
∥ φ ∥∞ +

MM1

Γ(ν)(1 + a)1−ν1
b2+a−µ−ν−ν1−aν1+µν.

For t ∈ [−r, 0], we have

∥ v(t) ∥≤ η
∥ φ ∥∞

Γ(µ(1 − ν) + ν)
<

∥ φ ∥∞
Γ(µ(1 − ν) + ν)

.

Therefore, from Lemma 11, T has a fixed point. That is, Equation (4) has a mild solution. □
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Theorem 2. Under the assumptions ( H2), ( H3), ( H4), Equation (4) has a mild solution if

4Mbµ(ν−1)+1

νΓ(ν)

n

∑
k=0

Lk < 1.

Proof. Similar to Theorem 1, T : Bk0 → Bk0 is continuous, and
{

Tv, v ∈ Bk0

}
is uniformly

bounded and equicontinuous. Let G = coT
(

Bk0

)
. Then, it is simple to demonstrate that

T maps G into itself and G ⊂ Bk0 is equicontinuous. By Lemma 2, we have that for any
B ⊂ G, there exists a countable set B0 = {wn} ⊂ B, such that

λ(T(B)) ≤ 2λ(T(B0)).

The equicontinuity of G implies that B0 ⊂ B is also equicontinuous.
By (H4), for any t ∈ (0, b], we have

λ(T(B0)(t))

= λ

(
t(1−µ)(1−ν)Sµ,ν(t)φ(0) +

∫ t

0
t(1−µ)(1−ν)Kν(t − s)

f (s, wn(s − τ0), wn(s − τ1), · · · , wn(s − τn))ds)

≤ 2M
Γ(ν)

b(1−µ)(1−ν)
∫ t

0
(t − s)ν−1

λ( f (s, wn(s − τ0), wn(s − τ1), · · · , wn(s − τn)))ds

≤ 2M
Γ(ν)

n

∑
k=0

Lkb(1−µ)(1−ν)
∫ t

0
(t − s)ν−1λ(B0(s))ds

≤ 2Mbµ(ν−1)+1

νΓ(ν)

n

∑
k=0

Lkλ(B).

(11)

When t ∈ [−r, 0], (11) is clearly true. Then, as T(B0) ⊂ G is bounded and equicontinuous,
it follows from Lemma 3 that

λ(T(B0)) = max
t∈[−r,b]

λ(T(B0)(t)).

Therefore, we have

λ(T(B)) ≤ 4Mbµ(ν−1)+1

νΓ(ν)

n

∑
k=0

Lkλ(B).

As 4Mbµ(ν−1)+1

νΓ(ν) ∑n
k=0 Lk < 1, then T : Bk0 → Bk0 is a k-set-contractive operator. Thus, we

know from Lemma 10 that the Cauchy Equation (4) has a mild solution. □

Theorem 3. Under assumptions (H5), Equation (4) has a unique mild solution provided

Mb(1−µ)(1−ν)

Γ(ν)

∫ t

0
(t − s)ν−1

n

∑
k=0

ρk(s)ds < 1.

Proof. It is obvious that Sµ,ν(t)φ(0) exists, Kν(t − s) f (s, u0s , u1s , · · · , uns)ds is the Bochner
integrable for s ∈ [0, t] and t ∈ (0, b]. Moreover, T : Bk0 → Bk0 .
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For v, v′ ∈ Bk0 , according to ( H5), we have

∥ (Tv)(t)−
(
Tv′
)
(t) ∥

= t(1−µ)(1−ν)∥
∫ t

0
Kν(t − s)

[
f (s, u0s , u1s , · · · , uns)ds − f

(
s, u′

0s
, u′

1s
, · · · , u′

ns

)]
ds ∥

≤ Mb(1−µ)(1−ν)

Γ(ν)

∫ t

0
(t − s)ν−1∥ f (s, u0s , u1s , · · · , uns)− f

(
s, u′

0s
, u′

1s
, · · · , u′

ns

)
∥ds

≤ Mb(1−µ)(1−ν)

Γ(ν)

∫ t

0
(t − s)ν−1

n

∑
k=0

ρk(s)∥ u − u′ ∥Yds

≤ Mb(1−µ)(1−ν)

Γ(ν)

∫ t

0
(t − s)ν−1

n

∑
k=0

ρk(s)ds∥ v − v′ ∥∞.

As Mb(1−µ)(1−ν)

Γ(ν)

∫ t
0 (t − s)ν−1 ∑n

k=0 ρk(s)ds < 1, by Banach contraction principle we con-
cluded that Cauchy Equation (4) has a unique mild solution. □

4. An Example

Let X = L2([0, 1], R), we study the fractional delay diffusion equations

D
2
3 , 1

6
0+ u(x, t) = ∂2

xu(x, t) + f (x, t, u(x, t), u(x, t − τ)),
(x, t) ∈ [0, 1]× (0, b],
u(0, t) = u(1, t) = 0, t ∈ (0, b],

I
5

18
0+u(x, 0+) = φ(x, 0), x ∈ [0, 1],

u(x, t) = t−
5
18 φ(x,t)
Γ( 13

18 )
, (x, t) ∈ [0, 1]× [−r, 0),

(12)

where D
2
3 , 1

6
0+ represents the Hilfer fractional derivative, µ = 2

3 , ν = 1
6 , τ ∈ [0, r], r > 0,

φ ∈ C[−r,0].
We let Au = u′′ , and have

D(A) =
{

u(·) ∈ X, u, u′ are absolutely continuous, u′′ ∈ X, u(0) = 0 = u(1)
}

.

Subsequently, A generates a strongly continuous semigroup {Q(t)}t≥0, and

Q(t)u =
∞

∑
n=1

e−n2t(u, pn)pn,

where the normalized eigenvector pn(x) =
√

2
π sin(nx) corresponds to the eigenvalues

n2(n ∈ N) of A. Furthermore, ( H1) is established, Q(t)(t > 0) is compact, continuous in
the uniform operator topology, and ∥ Q(t) ∥ ≤ e−t, t ≥ 0. Additionally, we have two
operators S 2

3 , 1
6
(t) and K 1

6
(t) are defined by

S 2
3 , 1

6
(t) =

1
6Γ
( 5

9
) ∫ t

0

∫ ∞

0
θ(t − s)−

4
9 s−

5
6 M 1

6
(θ)Q

(
s

1
6 θ
)

dθds,

K 1
6
(t) =

1
6

t−
5
6

∫ ∞

0
θM 1

6
(θ)Q

(
t

1
6 θ
)

dθ.

Clearly,

∥ K 1
6
(t) ∥≤ t−

5
6

Γ
(

1
6

) , ∥ S 2
3 , 1

6
(t) ∥ ≤ t−

5
18

Γ
(

13
18

) , t > 0.
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We let u(t)x = u(x, t), u(t − τ)x = u(x, t − τ) and f (t, u(t), u(t − τ))x = f (x, t, u(x, t) ,
u(x, t − τ)), where x ∈ [0, 1], t ∈ (0, b]. Then, (12) can be converted into the problem in X

D
2
3 , 1

6
0+ u(t) = Au(t) + f (t, u(t), u(t − τ)), t ∈ (0, b],

I
5

18
0+u(0+) = φ(0),

u(t) = t−
5
18 φ(t)

Γ( 13
18 )

, t ∈ [−r, 0).

(13)

We take f (t, u(t), u(t − τ)) = t2[sin u(t) + sin u(t − τ)]; then, ( H1)–(H3), (H4), (H5) are
satisfied, where ρ0(t) = ρ1(t) = L0 = L1 = b2. According to Theorem 1, Theorem 2, or
Theorem 3, (13) there is a mild solution provided b

47
18 < 1

12 Γ
(

1
6

)
.

5. Conclusions

Compared with other fractional derivatives, such as the Riemann–Liouville derivative
and Caputo derivative, the Hilfer fractional derivative is built on a new theoretical founda-
tion of fractional calculus, which provides a more complete and unified definition to better
describe the behavior of complex systems. Therefore, studying the existence of solutions
to the Hilfer fractional delay diffusion equation contributes to a deeper understanding of
the behavior of such equations and provides accurate mathematical models for solving
practical problems. This endeavor holds significant academic significance in optimizing
engineering designs, predicting outcomes, and controlling natural systems. The main focus
of this article is to investigate the existence of solutions to delay diffusion equations with
Hilfer fractional derivatives. Under the assumption that the analytic semigroup is compact
or non-compact, the Leray–Schauder fixed-point theorem and non-compactness measure
method were employed to prove the existence of mild solutions, while Banach contraction
mapping principle was utilized to establish the uniqueness of mild solutions. Moving
forward, we aim to further explore the regularity and stability of mild solution to delay
diffusion equations with the Hilfer fractional derivative.
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