Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model
Abstract
1. Introduction
2. Bifurcation and Chaotic Behaviors
2.1. Preliminary
2.2. Mathematical Derivation
2.3. Qualitative Analysis
2.4. Qualitative Analysis with Perturbation Term
3. Optical Soliton Solution of Equation (1)
3.1. , ,
3.2. , ,
3.3. , ,
3.4. , ,
3.5. , ,
3.6. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Yang, Z. Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model. AIMS Math. 2023, 8, 17914–17942. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.J. Boundedness of solutions for an attraction-repulsion model with indirect signal production. Mathematics 2024, 12, 1143. [Google Scholar] [CrossRef]
- Tang, L. Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with β-derivative in optical fibers. Opt. Quant. Electron. 2024, 56, 175. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Z. Regularizing a two-dimensional time-fractional inverse heat conduction problem by a fractional Landweber iteration method. Comput. Math. Appl. 2024, 164, 104–115. [Google Scholar] [CrossRef]
- Jornet, M. On the Cauchy-Kovalevskaya theorem for Caputo fractional differential equations. Physica D 2024, 462, 134139. [Google Scholar] [CrossRef]
- Yu, J.C.; Feng, Y.Q. On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws. Chaos Solitons Fractals 2024, 182, 114855. [Google Scholar] [CrossRef]
- Espinosa-Paredes, G.; Cruz-López, G.A. A new compartmental fractional neutron point kinetic equations with different fractional orders. Nucl. Eng. Des. 2024, 423, 113184. [Google Scholar] [CrossRef]
- Lu, Y.S.; Hu, Y.Z.; Qiao, Y.; Yuan, M.J.; Xu, W. Sparse least squares via fractional function group fractional function penalty for the identification of nonlinear dynamical systems. Chaos. Soliton. Fract. 2024, 182, 114733. [Google Scholar] [CrossRef]
- Liu, C.Y.; Li, Z. The dynamical behavior analysis and the traveling wave solutions of the stochastic Sasa-Satsuma Equation. Qual. Theor. Dyn. Syst. 2024, 23, 157. [Google Scholar] [CrossRef]
- Gu, M.S.; Chen Peng, C.; Li, Z. Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation. AIMS Math. 2023, 9, 6699–6708. [Google Scholar] [CrossRef]
- Mannaf, M.A.; Islam, M.E.; Bashar, H.; Basak, U.S.; Akbar, M.A. Dynamical behavior of optical self-control solion in a liquid crystal model. Results Phys. 2024, 57, 107324. [Google Scholar] [CrossRef]
- Usman, Y.; Abdulkadir, S.T.; Ren, J.L. Propagation of M-truncated optical pulses in nonlinear optics. Opt. Quant. Electron. 2023, 55, 102. [Google Scholar]
- Rehman, H.U.; Awan, A.U.; Allahyani, S.A.; Tag-ElDin, E.M.; Binyamin, M.A.; Yasin, S. Exact solution of paraxial wave dynamical model with kerr media by using ϕ6 model expansion technique. Results Phys. 2022, 42, 105975. [Google Scholar] [CrossRef]
- Rehman, H.U.; Seadawy, A.R.; Younis, M.; Yasi, S.; Raza, S.T.R.; Althobaiti, S. Monochromatic optical beam propagation of paraxial dynamical model in kerr media. Results Phys. 2021, 31, 105015. [Google Scholar] [CrossRef]
- Roshid, M.M.; Uddin, M.; Mostafa, G. Dynamical structure of optical solution for M-fractional paraxial wave equation by using unified technique. Results Phys. 2023, 51, 106632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Li, Z. Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model. Fractal Fract. 2024, 8, 348. https://doi.org/10.3390/fractalfract8060348
Luo J, Li Z. Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model. Fractal and Fractional. 2024; 8(6):348. https://doi.org/10.3390/fractalfract8060348
Chicago/Turabian StyleLuo, Jie, and Zhao Li. 2024. "Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model" Fractal and Fractional 8, no. 6: 348. https://doi.org/10.3390/fractalfract8060348
APA StyleLuo, J., & Li, Z. (2024). Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model. Fractal and Fractional, 8(6), 348. https://doi.org/10.3390/fractalfract8060348