Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model
Abstract
:1. Introduction
2. Bifurcation and Chaotic Behaviors
2.1. Preliminary
2.2. Mathematical Derivation
2.3. Qualitative Analysis
2.4. Qualitative Analysis with Perturbation Term
3. Optical Soliton Solution of Equation (1)
3.1. , ,
3.2. , ,
3.3. , ,
3.4. , ,
3.5. , ,
3.6. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Yang, Z. Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model. AIMS Math. 2023, 8, 17914–17942. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.J. Boundedness of solutions for an attraction-repulsion model with indirect signal production. Mathematics 2024, 12, 1143. [Google Scholar] [CrossRef]
- Tang, L. Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with β-derivative in optical fibers. Opt. Quant. Electron. 2024, 56, 175. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Z. Regularizing a two-dimensional time-fractional inverse heat conduction problem by a fractional Landweber iteration method. Comput. Math. Appl. 2024, 164, 104–115. [Google Scholar] [CrossRef]
- Jornet, M. On the Cauchy-Kovalevskaya theorem for Caputo fractional differential equations. Physica D 2024, 462, 134139. [Google Scholar] [CrossRef]
- Yu, J.C.; Feng, Y.Q. On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws. Chaos Solitons Fractals 2024, 182, 114855. [Google Scholar] [CrossRef]
- Espinosa-Paredes, G.; Cruz-López, G.A. A new compartmental fractional neutron point kinetic equations with different fractional orders. Nucl. Eng. Des. 2024, 423, 113184. [Google Scholar] [CrossRef]
- Lu, Y.S.; Hu, Y.Z.; Qiao, Y.; Yuan, M.J.; Xu, W. Sparse least squares via fractional function group fractional function penalty for the identification of nonlinear dynamical systems. Chaos. Soliton. Fract. 2024, 182, 114733. [Google Scholar] [CrossRef]
- Liu, C.Y.; Li, Z. The dynamical behavior analysis and the traveling wave solutions of the stochastic Sasa-Satsuma Equation. Qual. Theor. Dyn. Syst. 2024, 23, 157. [Google Scholar] [CrossRef]
- Gu, M.S.; Chen Peng, C.; Li, Z. Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation. AIMS Math. 2023, 9, 6699–6708. [Google Scholar] [CrossRef]
- Mannaf, M.A.; Islam, M.E.; Bashar, H.; Basak, U.S.; Akbar, M.A. Dynamical behavior of optical self-control solion in a liquid crystal model. Results Phys. 2024, 57, 107324. [Google Scholar] [CrossRef]
- Usman, Y.; Abdulkadir, S.T.; Ren, J.L. Propagation of M-truncated optical pulses in nonlinear optics. Opt. Quant. Electron. 2023, 55, 102. [Google Scholar]
- Rehman, H.U.; Awan, A.U.; Allahyani, S.A.; Tag-ElDin, E.M.; Binyamin, M.A.; Yasin, S. Exact solution of paraxial wave dynamical model with kerr media by using ϕ6 model expansion technique. Results Phys. 2022, 42, 105975. [Google Scholar] [CrossRef]
- Rehman, H.U.; Seadawy, A.R.; Younis, M.; Yasi, S.; Raza, S.T.R.; Althobaiti, S. Monochromatic optical beam propagation of paraxial dynamical model in kerr media. Results Phys. 2021, 31, 105015. [Google Scholar] [CrossRef]
- Roshid, M.M.; Uddin, M.; Mostafa, G. Dynamical structure of optical solution for M-fractional paraxial wave equation by using unified technique. Results Phys. 2023, 51, 106632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Li, Z. Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model. Fractal Fract. 2024, 8, 348. https://doi.org/10.3390/fractalfract8060348
Luo J, Li Z. Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model. Fractal and Fractional. 2024; 8(6):348. https://doi.org/10.3390/fractalfract8060348
Chicago/Turabian StyleLuo, Jie, and Zhao Li. 2024. "Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model" Fractal and Fractional 8, no. 6: 348. https://doi.org/10.3390/fractalfract8060348
APA StyleLuo, J., & Li, Z. (2024). Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model. Fractal and Fractional, 8(6), 348. https://doi.org/10.3390/fractalfract8060348