Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents
Abstract
1. Introduction and Background
2. Preliminaries
3. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Wang, J.; Ge, W. Variational methods to mixed boundary value problem for impulsive differential equations with a parameter. Taiwan J. Math. 2009, 13, 1353–1370. [Google Scholar] [CrossRef]
- Boucenna, A.; Moussaoui, T. Existence of a positive solution for a boundary value problem via a topological-variational theorem. J. Fract. Calc. Appl. 2014, 5, 1–9. [Google Scholar]
- Lei, C.-Y. Existence and multiplicity of positive solutions forNeumann problems involving singularity and critical growth. J. Math. Anal. Appl. 2018, 459, 959–979. [Google Scholar] [CrossRef]
- Liu, W.; Dai, G. Existence and multiplicity results for double phase problem. J. Differ. Equ. 2018, 265, 4311–4334. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A. The bouncing ball and the Grü nwald–Letnikov definition of fractional operator. Fract. Calc. Appl. Anal. 2021, 24, 1003–1014. [Google Scholar] [CrossRef]
- Radulescu, V.D. Nonlinear elliptic equations with variable exponent: Old and new. Nonlinear Anal. 2015, 121, 336–369. [Google Scholar] [CrossRef]
- Winslow, W. Induced fibration of suspensions. J. Appl. Phys. 1949, 20, 1137–1140. [Google Scholar] [CrossRef]
- Halsey, T.C. Electrorheological fluids. Science 1992, 258, 761–766. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
- Wulong, L.; Dai, G.; Papageorgiou, N.S.; Winkert, P. Existence of solutions for singular double phase problems via the Nehari manifold method. arXiv 2021, arXiv:2101.00593. [Google Scholar]
- Papageorgiou, N.S.; Repovs, D.D.; Vetro, C. Positive solutions for singular double phase problems. J. Math. Anal. Appl. 2021, 501, 123896. [Google Scholar] [CrossRef]
- Bahrouni, A.; Radulescu, V.D.; Winkert, P. Double phase problems with variable growth and convection for the Baouendi–Grushin operator. Z. Angew. Math. Phys. 2020, 71, 183. [Google Scholar] [CrossRef]
- Gasinski, L.; Papageorgiou, N.S. Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 2021, 14, 613–626. [Google Scholar] [CrossRef]
- Benslimane, O.; Aberqi, A. Singular two-phase problem on a complete manifold: Analysis and insights. Arab. J. Math. 2024, 13, 45–62. [Google Scholar] [CrossRef]
- Crespo-Blanco, Á.; Winkert, P. Nehari manifold approach for superlinear double phase problems with variable exponents. Ann. di Mat. Pura ed Appl. (1923-) 2024, 203, 605–634. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Sousa, J.V.C.; De Oliveira, E.C. On the ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- You, Z.; Feckan, M.; Wang, J.R. Relative controllability of fractional delay differential equations via delayed perturbation of Mittag–Leffler functions. J. Comput. Appl. Math. 2020, 378, 112939. [Google Scholar] [CrossRef]
- Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 2012, 22, 1250086. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Tavares, L.S.; César, E.; Torres, L. A variational approach for a problem involving a ψ-Hilfer fractional operator. J. Appl. Anal. Comput. 2021, 11, 1610–1630. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Zuo, J.; O’Regan, D. The Nehari manifold for a ψ-Hilfer fractional p-Laplacian. Appl. Anal. 2022, 101, 5076–5106. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Karla, B.L.; Leandro, S.T. Existence of Solutions for a Singular Double Phase Problem Involving a ψ-Hilfer Fractional Operator Via Nehari Manifold. Qual. Theory Dyn. 2023, 22, 94. [Google Scholar] [CrossRef]
- Roozbeh, E.; Nemat, N. Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations. Math. Methods Appl. Sci. 2021, 44, 12909–12920. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Tayyebi, E. Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory. Mediterr. J. Math. 2018, 15, 1–25. [Google Scholar] [CrossRef]
- Ghanmi, A.; Zhang, Z. Nehari manifold and multiplicity results for a class of fractional boundary value problems with p- Laplacian. Bull. Korean Math. Soc. 2019, 56, 1297–1314. [Google Scholar]
- Kamache, F.; Guefaifia, R.; Boulaaras, S. Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1781–1803. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, D.S.; Leandro, S.T. Solutions of the mean curvature equation with the Nehari manifold. Comput. Appl. Math. 2024, 43, 24. [Google Scholar] [CrossRef]
- Aberqi, A.; Bennouna, J.; Benslimane, O.; Ragusa, M.A. Existence results for double phase problem in Sobolev–Orlicz spaces with variable exponents in complete manifold. Mediterr. J. Math. 2022, 19, 158. [Google Scholar] [CrossRef]
- Hewitt, E.; Stromberg, K. Real and Abstract Analysis; Springer: New York, NY, USA, 1965. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouali, T.; Guefaifia, R.; Jan, R.; Boulaaras, S.; Radwan, T. Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents. Fractal Fract. 2024, 8, 329. https://doi.org/10.3390/fractalfract8060329
Bouali T, Guefaifia R, Jan R, Boulaaras S, Radwan T. Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents. Fractal and Fractional. 2024; 8(6):329. https://doi.org/10.3390/fractalfract8060329
Chicago/Turabian StyleBouali, Tahar, Rafik Guefaifia, Rashid Jan, Salah Boulaaras, and Taha Radwan. 2024. "Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents" Fractal and Fractional 8, no. 6: 329. https://doi.org/10.3390/fractalfract8060329
APA StyleBouali, T., Guefaifia, R., Jan, R., Boulaaras, S., & Radwan, T. (2024). Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents. Fractal and Fractional, 8(6), 329. https://doi.org/10.3390/fractalfract8060329