Matrix-Wigner Distribution
Abstract
:1. Introduction
2. Spreads in M-WD Domains
3. Uncertainty Product in M-WD Domains
3.1. Spread in the Time-M-WD Domain Revisited
3.2. Spread in the Frequency-M-WD Domain Revisited
3.3. The Product of Spreads
4. Heisenberg’s Inequalities in the M-WD Setting
5. The Optimal M-WDs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WD | Wigner distribution |
-WD | -Wigner distribution |
M-WD | Matrix-Wigner distribution |
FT | Fourier transform |
STFT | Short-time Fourier transform |
WT | Wavelet transform |
List of Symbols
⊗ | tensor product |
change of coordinates | |
transpose operator | |
— | complex conjugate operator |
trace operator | |
gradient operator | |
absolute operator | |
minimum eigenvalue operator | |
distributional bracket | |
Dirac delta operator for vectors | |
determinant operator for matrices | |
translation operator | |
modulation operator | |
class of integrable functions defined on | |
class of square integrable functions defined on | |
identity matrix | |
null matrix | |
class of matrices satisfying | |
FT of f | |
inverse FT of f | |
WD of f | |
-WD of f | |
M-WD of f | |
-norm for functions | |
spread matrix in the time domain | |
spread matrix in the frequency domain | |
moment vector in the time domain | |
moment vector in the frequency domain | |
moment vector in the time--WD domain | |
moment vector in the frequency--WD domain | |
moment vector in the time-M-WD domain | |
moment vector in the frequency-M-WD domain | |
spread in the time domain | |
spread in the frequency domain | |
spread in the time--WD domain | |
spread in the frequency--WD domain | |
spread in the time-M-WD domain | |
spread in the frequency-M-WD domain | |
covariance in the time–frequency domain | |
absolute covariance in the time–frequency domain | |
the uncertainty product in time and frequency domains | |
the uncertainty product in time-M-WD and frequency-M-WD domains |
References
- Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Ville, J. Théorie et applications de la notion de signal analytique. Câbles Transm. 1948, 2, 61–74. [Google Scholar]
- Cohen, L. On a fundamental property of the Wigner distribution. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 559–561. [Google Scholar] [CrossRef]
- Cohen, L. Wigner distribution for finite duration or band-limited signals and limiting cases. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 796–806. [Google Scholar] [CrossRef]
- Cohen, L. Time-frequency distributions—A review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef]
- Cohen, L. Time-Frequency Analysis: Theory and Applications; Prentice Hall: Hoboken, NJ, USA, 1995. [Google Scholar]
- Boashash, B.; Black, P. An efficient real-time implementation of the Wigner-Ville distribution. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1611–1618. [Google Scholar] [CrossRef]
- Boashash, B. Note on the use of the Wigner distribution for time-frequency signal analysis. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1518–1521. [Google Scholar] [CrossRef]
- Boashash, B.; O’Shea, P. Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency. IEEE Trans. Signal Process. 1993, 41, 1439–1445. [Google Scholar] [CrossRef]
- Stanković, L.; Stanković, S. Wigner distribution of noisy signals. IEEE Trans. Signal Process. 1993, 41, 956–960. [Google Scholar] [CrossRef]
- Stanković, L. A method for time-frequency analysis. IEEE Trans. Signal Process. 1994, 42, 225–229. [Google Scholar] [CrossRef]
- Stanković, L.; Stankovixcx, S.; Dakovixcx, M. From the STFT to the Wigner distribution [lecture notes]. IEEE Signal Process. Mag. 2014, 31, 163–174. [Google Scholar] [CrossRef]
- Folland, G.B.; Sitaram, A. The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 1997, 3, 207–238. [Google Scholar] [CrossRef]
- Korn, P. Some uncertainty principles for time-frequency transforms of the Cohen class. IEEE Trans. Signal Process. 2005, 53, 523–527. [Google Scholar] [CrossRef]
- Ramapriya, D.M.; Kaliprasad, C.S.; Kumar, H. Wigner distribution function approach to analyze MIMO communication within a waveguide. Heliyon 2023, 9, e13929. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Li, D.; He, Y.F.; Chen, Y.J.; Zhang, J.W.; Zhou, C.X. K-Wigner distribution: Definition, uncertainty principles and time-frequency analysis. IEEE Trans. Inf. Theory 2023, 69, 2722–2736. [Google Scholar] [CrossRef]
- Guner, K.K.; Gulum, T.O.; Erkmen, B. FPGA-based Wigner–Hough transform system for detection and parameter extraction of LPI radar LFMCW signals. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Kiang, C.W.; Kiang, J.F. Imaging on underwater moving targets with multistatic synthetic aperture sonar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Chen, J.Y.; Li, B.Z. Wigner distribution associated with linear canonical transform of generalized 2-D analytic signals. Digital Signal Process. 2024, 149, 104481. [Google Scholar] [CrossRef]
- Zhang, Z.C.; He, Y.F.; Zhang, J.W.; Zhou, C.X. The optimal k-Wigner distribution. Signal Process. 2022, 199, 108608. [Google Scholar] [CrossRef]
- Eldar, Y.C. Uncertainty relations for shift-invariant analog signals. IEEE Trans. Inf. Theory 2009, 55, 5742–5757. [Google Scholar] [CrossRef]
- Gabor, D. Theory of communication. J. Inst. Electr. Eng. 1946, 93, 429–457. [Google Scholar] [CrossRef]
- Dang, P.; Deng, G.T.; Qian, T. A sharper uncertainty principle. J. Funct. Anal. 2013, 265, 2239–2266. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Shi, X.Y.; Wu, A.Y.; Li, D. Sharper N-d Heisenberg’s uncertainty principle. IEEE Signal Process. Lett. 2021, 28, 1665–1669. [Google Scholar] [CrossRef]
- Boggiatto, P.; Donno, G.D.; Oliaro, A. Time-frequency representations of Wigner type and pseudo-differential operators. Trans. Am. Math. Soc. 2010, 362, 4955–4981. [Google Scholar] [CrossRef]
- Janssen, A.J.E.M. Bilinear phase-plane distribution functions and positivity. J. Math. Phys. 1985, 26, 1986–1994. [Google Scholar] [CrossRef]
- Wong, M.W. Weyl Transforms; Springer: New York, NY, USA, 1998. [Google Scholar]
- Shubin, M.A. Pseudodifferential Operators and Spectral Theory, 2nd ed.; Andersson, S.I., Translator; Springer: New York, NY, USA, 2001. [Google Scholar]
- Boggiatto, P.; Carypis, E.; Oliaro, A. Windowed-Wigner representations in the Cohen class and uncertainty principles. J. Geom. Anal. 2013, 23, 1753–1779. [Google Scholar] [CrossRef]
- Boggiatto, P.; Carypis, E.; Oliaro, A. Local uncertainty principles for the Cohen class. J. Math. Anal. Appl. 2014, 419, 1004–1022. [Google Scholar] [CrossRef]
- Cordero, E.; de Gosson, M.A.; Döfler, M.; Nicola, F. On the symplectic covariance and interferences of time-frequency distributions. SIAM J. Math. Anal. 2018, 50, 2178–2193. [Google Scholar] [CrossRef]
- Cordero, E.; Nicola, F.; Trapasso, S.I. Almost diagonalization of τ-pseudodifferential operators with symbols in Wiener amalgam and modulation spaces. J. Fourier Anal. Appl. 2019, 25, 1927–1957. [Google Scholar] [CrossRef]
- Cordero, E.; de Gosson, M.A.; Döfler, M.; Nicola, F. Generalized Born-Jordan distributions and applications. Adv. Comput. Math. 2020, 46, 51. [Google Scholar] [CrossRef]
- Cordero, E.; Rodino, L. Wigner analysis of operators. Part I: Pseudodifferential operators and wave fronts. Appl. Comput. Harmon. Anal. 2022, 58, 85–123. [Google Scholar] [CrossRef]
- Cordero, E.; Rodino, L. Characterization of modulation spaces by symplectic representations and applications to Schrödinger equations. J. Funct. Anal. 2023, 284, 109892. [Google Scholar] [CrossRef]
- Luef, F.; Skrettingland, E. Mixed-state localization operators: Cohen’s class and trace class operators. J. Fourier Anal. Appl. 2019, 25, 2064–2108. [Google Scholar] [CrossRef]
- Luef, F.; Skrettingland, E. On accumulated Cohens class distributions and mixed-state localization operators. Constr. Approx. 2020, 52, 31–64. [Google Scholar] [CrossRef]
- D’Elia, L. On the continuity of τ-Wigner pseudodifferential operators. In Landscapes of Time-Frequency Analysis; Boggiatto, P., Cordero, E., de Gosson, M.A., Feichtinger, H.G., Nicola, F., Oliaro, A., Tabacco, A., Eds.; Birkhäuser: Cham, Switzerland, 2019; pp. 159–171. [Google Scholar]
- Guo, W.C.; Chen, J.C.; Fan, D.S.; Zhao, G.P. Characterization of boundedness on weighted modulation spaces of τ-Wigner distributions. Int. Math. Res. Not. 2022, 2022, 16844–16901. [Google Scholar] [CrossRef]
- Vuojamo, V.; Turunen, V.; Orelma, H. Time-frequency analysis in Rn. J. Fourier Anal. Appl. 2022, 28, 6. [Google Scholar] [CrossRef]
- Cordero, E.; Trapasso, S.I. Linear perturbations of the Wigner distribution and the Cohen’s class. Anal. Appl. 2020, 18, 385–422. [Google Scholar] [CrossRef]
- Bayer, D.; Cordero, E.; Gröchenig, K.; Trapasso, S.I. Linear perturbations of the Wigner transform and the Weyl quantization. In Advances in Microlocal and Time-Frequency Analysis; Boggiatto, P., Cappiello, M., Cordero, E., Coriasco, S., Garello, G., Oliaro, A., Seiler, J., Eds.; Birkhäuser/Springer: Cham, Switzerland, 2020; pp. 79–120. [Google Scholar]
- Zhang, Z.C. Uncertainty principle of complex-valued functions in specific free metaplectic transformation domains. J. Fourier Anal. Appl. 2021, 27, 68. [Google Scholar] [CrossRef]
- Zhang, Z.C. Uncertainty principle for real functions in free metaplectic transformation domains. J. Fourier Anal. Appl. 2019, 25, 2899–2922. [Google Scholar] [CrossRef]
- Wang, S.D.; Kuo, T.S.; Hsu, C.F. Trace bounds on the solution of the algebraic matrix Riccati and Lyapunov equation. IEEE Trans. Autom. Control 1986, 31, 654–656. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Zhang, Q.L. Eigenvalue inequalities for matrix product. IEEE Trans. Autom. Control 2006, 51, 1506–1509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Cui, M.; Qin, Z.; Zhang, Z.; Zhang, J. Matrix-Wigner Distribution. Fractal Fract. 2024, 8, 328. https://doi.org/10.3390/fractalfract8060328
Wang L, Cui M, Qin Z, Zhang Z, Zhang J. Matrix-Wigner Distribution. Fractal and Fractional. 2024; 8(6):328. https://doi.org/10.3390/fractalfract8060328
Chicago/Turabian StyleWang, Long, Manjun Cui, Ze Qin, Zhichao Zhang, and Jianwei Zhang. 2024. "Matrix-Wigner Distribution" Fractal and Fractional 8, no. 6: 328. https://doi.org/10.3390/fractalfract8060328
APA StyleWang, L., Cui, M., Qin, Z., Zhang, Z., & Zhang, J. (2024). Matrix-Wigner Distribution. Fractal and Fractional, 8(6), 328. https://doi.org/10.3390/fractalfract8060328