Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents
Abstract
:1. Introduction and Background
2. Preliminaries
3. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Wang, J.; Ge, W. Variational methods to mixed boundary value problem for impulsive differential equations with a parameter. Taiwan J. Math. 2009, 13, 1353–1370. [Google Scholar] [CrossRef]
- Boucenna, A.; Moussaoui, T. Existence of a positive solution for a boundary value problem via a topological-variational theorem. J. Fract. Calc. Appl. 2014, 5, 1–9. [Google Scholar]
- Lei, C.-Y. Existence and multiplicity of positive solutions forNeumann problems involving singularity and critical growth. J. Math. Anal. Appl. 2018, 459, 959–979. [Google Scholar] [CrossRef]
- Liu, W.; Dai, G. Existence and multiplicity results for double phase problem. J. Differ. Equ. 2018, 265, 4311–4334. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A. The bouncing ball and the Grü nwald–Letnikov definition of fractional operator. Fract. Calc. Appl. Anal. 2021, 24, 1003–1014. [Google Scholar] [CrossRef]
- Radulescu, V.D. Nonlinear elliptic equations with variable exponent: Old and new. Nonlinear Anal. 2015, 121, 336–369. [Google Scholar] [CrossRef]
- Winslow, W. Induced fibration of suspensions. J. Appl. Phys. 1949, 20, 1137–1140. [Google Scholar] [CrossRef]
- Halsey, T.C. Electrorheological fluids. Science 1992, 258, 761–766. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
- Wulong, L.; Dai, G.; Papageorgiou, N.S.; Winkert, P. Existence of solutions for singular double phase problems via the Nehari manifold method. arXiv 2021, arXiv:2101.00593. [Google Scholar]
- Papageorgiou, N.S.; Repovs, D.D.; Vetro, C. Positive solutions for singular double phase problems. J. Math. Anal. Appl. 2021, 501, 123896. [Google Scholar] [CrossRef]
- Bahrouni, A.; Radulescu, V.D.; Winkert, P. Double phase problems with variable growth and convection for the Baouendi–Grushin operator. Z. Angew. Math. Phys. 2020, 71, 183. [Google Scholar] [CrossRef]
- Gasinski, L.; Papageorgiou, N.S. Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 2021, 14, 613–626. [Google Scholar] [CrossRef]
- Benslimane, O.; Aberqi, A. Singular two-phase problem on a complete manifold: Analysis and insights. Arab. J. Math. 2024, 13, 45–62. [Google Scholar] [CrossRef]
- Crespo-Blanco, Á.; Winkert, P. Nehari manifold approach for superlinear double phase problems with variable exponents. Ann. di Mat. Pura ed Appl. (1923-) 2024, 203, 605–634. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Sousa, J.V.C.; De Oliveira, E.C. On the ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- You, Z.; Feckan, M.; Wang, J.R. Relative controllability of fractional delay differential equations via delayed perturbation of Mittag–Leffler functions. J. Comput. Appl. Math. 2020, 378, 112939. [Google Scholar] [CrossRef]
- Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 2012, 22, 1250086. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Tavares, L.S.; César, E.; Torres, L. A variational approach for a problem involving a ψ-Hilfer fractional operator. J. Appl. Anal. Comput. 2021, 11, 1610–1630. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Zuo, J.; O’Regan, D. The Nehari manifold for a ψ-Hilfer fractional p-Laplacian. Appl. Anal. 2022, 101, 5076–5106. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Karla, B.L.; Leandro, S.T. Existence of Solutions for a Singular Double Phase Problem Involving a ψ-Hilfer Fractional Operator Via Nehari Manifold. Qual. Theory Dyn. 2023, 22, 94. [Google Scholar] [CrossRef]
- Roozbeh, E.; Nemat, N. Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations. Math. Methods Appl. Sci. 2021, 44, 12909–12920. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Tayyebi, E. Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory. Mediterr. J. Math. 2018, 15, 1–25. [Google Scholar] [CrossRef]
- Ghanmi, A.; Zhang, Z. Nehari manifold and multiplicity results for a class of fractional boundary value problems with p- Laplacian. Bull. Korean Math. Soc. 2019, 56, 1297–1314. [Google Scholar]
- Kamache, F.; Guefaifia, R.; Boulaaras, S. Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1781–1803. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, D.S.; Leandro, S.T. Solutions of the mean curvature equation with the Nehari manifold. Comput. Appl. Math. 2024, 43, 24. [Google Scholar] [CrossRef]
- Aberqi, A.; Bennouna, J.; Benslimane, O.; Ragusa, M.A. Existence results for double phase problem in Sobolev–Orlicz spaces with variable exponents in complete manifold. Mediterr. J. Math. 2022, 19, 158. [Google Scholar] [CrossRef]
- Hewitt, E.; Stromberg, K. Real and Abstract Analysis; Springer: New York, NY, USA, 1965. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouali, T.; Guefaifia, R.; Jan, R.; Boulaaras, S.; Radwan, T. Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents. Fractal Fract. 2024, 8, 329. https://doi.org/10.3390/fractalfract8060329
Bouali T, Guefaifia R, Jan R, Boulaaras S, Radwan T. Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents. Fractal and Fractional. 2024; 8(6):329. https://doi.org/10.3390/fractalfract8060329
Chicago/Turabian StyleBouali, Tahar, Rafik Guefaifia, Rashid Jan, Salah Boulaaras, and Taha Radwan. 2024. "Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents" Fractal and Fractional 8, no. 6: 329. https://doi.org/10.3390/fractalfract8060329
APA StyleBouali, T., Guefaifia, R., Jan, R., Boulaaras, S., & Radwan, T. (2024). Existence of Weak Solutions for the Class of Singular Two-Phase Problems with a ψ-Hilfer Fractional Operator and Variable Exponents. Fractal and Fractional, 8(6), 329. https://doi.org/10.3390/fractalfract8060329