Fixed Point Results with Applications to Fractional Differential Equations of Anomalous Diffusion
Abstract
:1. Introduction
2. Preliminaries
- ()
- For all such that ⟹;
- ()
- For every sequence , and are equivalent;
- ()
- There exists such that .
- ()
- , ⟺;
- ()
- , for all ;
- ()
- For all , and with and , we haveThen, is recognized as an -MS.
3. Main Results
3.1. Fixed Point Theorems for F-(⋏,h)-Contractions
- There exists a positive constant ;
- F belongs to a specific class of functions Ω;
- is a function defined on the product of set with itself, taking values in the positive reals;
- ⋏ and h are the C-class functions;
- the mapping satisfies a contractive condition
3.2. Fixed Point Theorems for Interpolative Contractions
3.3. Consequences
3.3.1. Fixed Point Theorems in Complete -Metric Spaces
3.3.2. Fixed Point Results in Complete Orthogonal Metric Space
4. Applications
- is the concentration of particles;
- t is time;
- is position;
- is the Caputo fractional derivative with respect to time of order ;
- is the classical second derivative with respect to position.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bestvina, M. R-trees in topology, geometry and group theory. In Handbook of Geometric Topology; North-Holland: Amsterdam, The Netherlands, 2002; pp. 55–91. [Google Scholar]
- Semple, C.; Steel, M. Phylogenetics; Oxford University Press: Oxford, UK, 2023; Volume 24. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalizedmetric spaces. Publ. Math. Debrecen. 2000, 57, 31–37. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Univ. Osstrav. 1993, 1, 5–11. [Google Scholar]
- Gordji, M.; Rameani, E.D.; De La Sen, M.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory Appl. 2017, 18, 569–578. [Google Scholar] [CrossRef]
- Mani, G.; Gnanaprakasam, A.J.; Kausar, N.; Munir, M.; Salahuddin. Orthogonal F-contraction mapping on O-complete metric space with applications. Int. J. Fuzzy Log. Intell. Syst. 2021, 21, 243–250. [Google Scholar] [CrossRef]
- Gungor, N.B.; Turkoglu, D. Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP Conf. Proc. 2019, 2183, 040011. [Google Scholar]
- Jleli, M.; Samet, B. On a new generalization of metric spaces. J. Fixed Point Theory Appl. 2018, 20, 128. [Google Scholar] [CrossRef]
- Hussain, A.; Kanwal, T. Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results. Trans. A. Razmadze Math. Inst. 2018, 172, 481–490. [Google Scholar] [CrossRef]
- Asif, A.; Nazam, M.; Arshad, M.; Kim, S.O. F-metric, F-contraction and common fixed point theorems with applications. Mathematics 2019, 7, 586. [Google Scholar] [CrossRef]
- Faraji, H.; Mirkov, N.; Mitrović, Z.D.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some new results for (α,β)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry 2022, 14, 2429. [Google Scholar] [CrossRef]
- Kanwal, T.; Hussain, A.; Baghani, H.; De La Sen, M. New fixed point theorems in orthogonal F-metric spaces with application to fractional differential equation. Symmetry 2020, 12, 832. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Rawashdeh, A.S.; Al-Mazrooei, A.E. Fixed point results for (α,⊥F)-contractions in orthogonal F-metric spaces with applications. J. Funct. Spaces 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94, 94. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α–ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Ramezani, M. Orthogonal metric space and convex contractions. Int. J. Nonlinear Anal. Appl. 2015, 6, 127–132. [Google Scholar]
- Latif, A.; Isik, H.; Ansari, A.H. Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings. J. Nonlinear Sci. Appl. 2016, 9, 1129–1142. [Google Scholar] [CrossRef]
- Ansari, A.H.; Shukla, S. Some fixed point theorems for ordered F-(F-h)-contraction and subcontraction in 0-f-orbitally complete partial metric spaces. J. Adv. Math. Stud. 2016, 9, 37–53. [Google Scholar]
- Alizadeh, S.; Moradlou, F.; Salimi, P. Some fixed point results for (α,β)-(ψ,φ)-contractive mappings. Filomat 2014, 28, 3635–3647. [Google Scholar] [CrossRef]
- Abdou, A.A.N. Fixed point theorems: Exploring applications in fractional differential equations for economic growth. Fractal Fract. 2024, 8, 243. [Google Scholar] [CrossRef]
- Al-Mezel, S.A.; Ahmad, J. Fixed point results with applications to nonlinear fractional differential equations. AIMS Math. 2023, 8, 19743–19756. [Google Scholar] [CrossRef]
- Das, A.; Paunović, M.; Parvaneh, V.; Mursaleen, M.; Bagheri, Z. Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness. Demonstr. Math. 2023, 56, 20220192. [Google Scholar] [CrossRef]
- Mohammadi, B.; Paunović, M.; Parvanah, V.; Mursaleen, M. Existence of solution for some φ-Caputo fractional differential inclusions via Wardowski-Mizoguchi-Takahashi multi-valued contractions. Filomat 2023, 37, 3777–3789. [Google Scholar] [CrossRef]
- Paunović, M.; Mohammadi, B.; Parvaneh, V. On weak wardowski contractions and solvability of ρ-caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary conditions. J. Nonlinear Convex Anal. 2022, 23, 1261–1274. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Aleroeva, H.; Aleroev, T. Some applications of fractional calculus. IOP Conf. Ser. Mater. Sci. Eng. 2020, 747, 1–6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Zahed, H.; Ahmad, J. Fixed Point Results with Applications to Fractional Differential Equations of Anomalous Diffusion. Fractal Fract. 2024, 8, 318. https://doi.org/10.3390/fractalfract8060318
Ma Z, Zahed H, Ahmad J. Fixed Point Results with Applications to Fractional Differential Equations of Anomalous Diffusion. Fractal and Fractional. 2024; 8(6):318. https://doi.org/10.3390/fractalfract8060318
Chicago/Turabian StyleMa, Zhenhua, Hanadi Zahed, and Jamshaid Ahmad. 2024. "Fixed Point Results with Applications to Fractional Differential Equations of Anomalous Diffusion" Fractal and Fractional 8, no. 6: 318. https://doi.org/10.3390/fractalfract8060318
APA StyleMa, Z., Zahed, H., & Ahmad, J. (2024). Fixed Point Results with Applications to Fractional Differential Equations of Anomalous Diffusion. Fractal and Fractional, 8(6), 318. https://doi.org/10.3390/fractalfract8060318