Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control
Abstract
1. Introduction
2. Preparatory Knowledge and Model Description
3. Main Results
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Lu, Y.; He, S.; Lu, R. Synchronization control for unreliable network systems in intelligent robots. IEEE/ASME Trans. Mech. 2019, 24, 2641–2651. [Google Scholar] [CrossRef]
- Oong, H.; Isa, N. Adaptive evolutionary artificial neural networks for pattern classification. IEEE Trans. Neural Netw. 2011, 22, 1823–1836. [Google Scholar] [CrossRef]
- Li, B.; Chow, M.; Tipsuwan, Y.; Hung, J. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2000, 47, 1060–1069. [Google Scholar] [CrossRef]
- Ali, M.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B. Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simulat. 2020, 83, 105088. [Google Scholar]
- Wang, M.; Jia, B.; Du, F.; Liu, X. Asymptotic stability of fractional difference equations with bounded time delays. Fract. Calc. Appl. Anal. 2020, 23, 571–590. [Google Scholar] [CrossRef]
- Yang, T.; Yang, L. The global stability of fuzzy cellular networks. IEEE Trans. Circuits Syst. I 1996, 43, 880–883. [Google Scholar] [CrossRef]
- Ortigueira, M.; Arnaldo, G. On the relation between the fractional Brownian motion and the fractional derivatives. Phys. Lett. A 2008, 372, 958–968. [Google Scholar] [CrossRef]
- Ioannis, D.; Dumitru, B. Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 2018, 337, 591–606. [Google Scholar]
- Mainardi, F.; Gorenflo, R. Fractional calculus and special functions. In Lecture Notes on Mathematical Physics; University of Bologna: Bologna, Italy, 2013. [Google Scholar]
- Atıcı, F.; Eloe, P. Gronwall’s inequality on discrete fractional calculus, Comput. Math. Appl. 2012, 64, 3193–3200. [Google Scholar]
- Qiu, H.; Cao, J.; Liu, H. Passivity of fractional-order coupled neural networks with interval uncertainties. Math. Comput. Simul. 2023, 205, 845–860. [Google Scholar] [CrossRef]
- Ahmadova, A.; Mahmudov, I. Existence and uniqueness results for a class of fractional stochastic neutral differential equations. Chaos Solitons Fract. 2020, 139, 110253. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liao, Y. Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives. IEEE Trans. Cybern. 2022, 52, 9670–9683. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Wang, Z. Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays. Appl. Math. Comput. 2022, 430, 127303. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Li, L.; Wu, D. Quasi-synchronization of fractional-orde complex-valued memristive recurrent neural networks with switching jumps mismatch. Neural Process. Lett. 2021, 53, 865–891. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; Zhang, L.; Jiang, H.; Cao, J. Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control. Fuzzy Sets Syst. 2022, 443, 50–69. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B.; Zeng, Z. Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2519–2535. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, Z. Quasi-projective synchronization of fractional order chaotic systems under input saturation. Phys. A 2019, 534, 122132. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; Cao, J.; Jiang, H.; Alsaedi, A. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw. 2019, 118, 102–109. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Rihan, F.; Seadawy, A. Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos Solitons Fract. 2020, 131, 109491. [Google Scholar] [CrossRef]
- Ali, S.; Hymavathi, M. Synchronization of fractional order neutral type fuzzy cellular neural networks with discrete and distributed delays via state feedback control. Neural Process. Lett. 2021, 53, 929–957. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, G.; Fu, X. Synchronization of a network coupled with complex-variable chaotic systems. Chaos 2012, 22, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xiong, X.; Tang, R.; Yang, X. Exponential synchronization of inertial neural networks with mixed delays via quantized pinning control. Neurocomputing 2018, 310, 165–171. [Google Scholar] [CrossRef]
- Jain, J.; Zhang, W.; Liu, X.; Shukla, M. Quantized controller for a class of uncertain nonlinear systems with dead-zone nonlinearity. ISA Trans. 2020, 107, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Kosko, B. Adaptive bidirectional associative memories. Appl. Opt. 1987, 26, 4947–4960. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhong, S.; Li, Y.; Xu, F. Finite-time Mittag-Leffler synchronization of fractional-order memristive BAM neural networks with time delays. Neurocomputing 2016, 219, 431–439. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Zhang, L.; Hu, C.; Jiang, H. Synchronization analysis and parameters identification of uncertain delayed fractional-order BAM neural networks. Neural Comput. Appl. 2023, 35, 1041–1052. [Google Scholar] [CrossRef]
- Wu, G.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Anal. Model. Control 2019, 24, 919–936. [Google Scholar] [CrossRef]
- Jia, B.; Du, F.; Erbe, L.; Peterson, A. Asymptotic behavior of nabla half order h-difference equations. J. Appl. Anal. Comput. 2018, 8, 1707–1726. [Google Scholar]
- You, X.; Song, Q.; Zhao, Z. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay. Neural Netw. 2020, 122, 382–394. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Hu, C.; Jiang, H.; Alsaadi, F. Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2023; early access. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y. Synchronization analysis for discrete fractional-order complex-valued neural networks with time delays. Neural Comput. Appl. 2021, 33, 10503–10514. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Zhang, L.; Hu, C.; Jiang, H. Quasi-projective and Mittag-Leffler synchronization of discrete-time fractional-order complex-valued fuzzy neural networks. Neural Process. Lett. 2023, 55, 6657–6677. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H.; Zhang, L.; Hu, C.; Jiang, H. Quasi-projective synchronization of discrete-time fractional-order quaternion-valued neural networks. J. Frankl. Inst. 2023, 360, 3263–3279. [Google Scholar] [CrossRef]
- Khan, A.; Tammer, C.; Zalinescu, C. Set-Valued Optimization: An Introduction with Applications; Springer: Berlin, Germany, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, H.; Yang, J.; Zhang, L. Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control. Fractal Fract. 2024, 8, 263. https://doi.org/10.3390/fractalfract8050263
Xu Y, Li H, Yang J, Zhang L. Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control. Fractal and Fractional. 2024; 8(5):263. https://doi.org/10.3390/fractalfract8050263
Chicago/Turabian StyleXu, Yingying, Hongli Li, Jikai Yang, and Long Zhang. 2024. "Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control" Fractal and Fractional 8, no. 5: 263. https://doi.org/10.3390/fractalfract8050263
APA StyleXu, Y., Li, H., Yang, J., & Zhang, L. (2024). Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control. Fractal and Fractional, 8(5), 263. https://doi.org/10.3390/fractalfract8050263