Contributions to the Numerical Solutions of a Caputo Fractional Differential and Integro-Differential System
Abstract
:1. Introduction
- The numerical approach of a new class of fractional differential and integro-differential system is the subject of this research. This system is essential in many scientific fields, including science, finance, control theories, nature, and electrostatics;
- Chebyshev polynomials of the first kind are used to solve this problem;
- A suitable transformation reduces the number of equations that must be solved in a system of two independent equations;
- An error bound is established for the approach solution achieved by the suggested procedure;
- We present the existence of the approach solution to the system;
- We offer an application to solve a differential equation;
- We compare our results with those of alternative approaches.
2. Preliminaries
2.1. Some Basic Concepts of Fractional Calculus
2.2. Shifted Chebyshev Polynomials of the First Kind
3. Fractional Integro-Differential System
4. Development of the Method
5. Convergence Analysis
6. Applications to Differential Equation
7. Numerical Simulations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.-D.; Shah, R.; Khan, A. A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, M.; Wang, D. Solutions of nonlinear fractional integro-differential equations with boundary conditions. Bull. TICMI 2012, 16, 58–65. [Google Scholar]
- Ravichandran, C.; Baleanu, D. On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces. Adv. Differ. Equ. 2013, 2013, 291. [Google Scholar] [CrossRef]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Shah, R.; Chung, J.D. Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Araour, M.; Mennouni, A. A New Procedures for Solving Two Classes of Fuzzy Singular Integro-Differential Equations: Airfoil Collocation Methods. Int. J. Appl. Comput. Math. 2022, 8, 35. [Google Scholar] [CrossRef]
- Bentrcia, T.; Mennouni, A. On the solution behavior of a nonlinear time-fractional Klein–Gordon equation: Theoretical study and numerical validation. Commun. Nonlinear Sci. Numer. Simul. 2023, 125, 107384. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Q.; Liu, H.; Ren, Y.; Zhang, J.; Zhang, S.; Qian, K.; Wen, H. Exploiting Newly Designed Fractional-Order 3D Lorenz Chaotic System and 2D Discrete Polynomial Hyper-Chaotic Map for High-Performance Multi-Image Encryption. Fractal Fract. 2023, 7, 887. [Google Scholar] [CrossRef]
- Sadri, K.; Hosseini, K.; Baleanu, D.; Salahshour, S.; Park, C. Designing a Matrix Collocation Method for Fractional Delay Integro-Differential Equations with Weakly Singular Kernels Based on Vieta–Fibonacci Polynomials. Fractal Fract. 2022, 6, 2. [Google Scholar] [CrossRef]
- Duangpan, A.; Boonklurb, R.; Juytai, M. Numerical Solutions for Systems of Fractional and Classical Integro-Differential Equations via Finite Integration Method Based on Shifted Chebyshev Polynomials. Fractal Fract. 2021, 5, 103. [Google Scholar] [CrossRef]
- Hassan, T.S.; Odinaev, I.; Shah, R.; Weera, W. Dynamical Analysis of Fractional Integro-Differential Equations. Mathematics 2022, 10, 2071. [Google Scholar] [CrossRef]
- Bushnaq, S.; Momani, S.; Zhou, Y. A reproducing kernel Hilbert space method for solving integro-differential equations of fractional order. J. Optim. Theory Appl. 2013, 156, 96–105. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L. Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 2017, 27. [Google Scholar] [CrossRef]
- Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations. Eng. Comput. 2021, 37, 1791–1806. [Google Scholar] [CrossRef]
- Mennouni, A.; Zaouia, S. Discrete septic spline quasi-interpolants for solving generalized Fredholm integral equation of the second kind. Math. Sci. 2017, 11, 345–357. [Google Scholar] [CrossRef]
- Amin, R.; Shah, K.; Asif, M.; Khan, I.; Ullah, F. An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. J. Comput. Appl. Math. 2021, 381, 113028. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Hashemi, M.S.; Hashim, I. On convergence of homotopy analysis method and its application to fractional integro-differential equations. Quaest. Math. 2013, 36, 93–105. [Google Scholar] [CrossRef]
- Althubiti, S.; Mennouni, A. An Effective Projection Method for Solving a Coupled System of Fractional-Order Bagley–Torvik Equations via Fractional Shifted Legendre Polynomials. Symmetry 2022, 14, 1514. [Google Scholar] [CrossRef]
- Mennouni, A. Airfoil polynomials for solving integro-differential equations with logarithmic kernel. Appl. Math. Comput. 2012, 218, 11947–11951. [Google Scholar] [CrossRef]
- Bin Jebreen, H. The Müntz–Legendre Wavelet Collocation Method for Solving Weakly Singular Integro-Differential Equations with Fractional Derivatives. Fractal Fract. 2023, 7, 763. [Google Scholar] [CrossRef]
- Li, M.; Chen, L.; Zhou, Y. Sinc Collocation Method to Simulate the Fractional Partial Integro-Differential Equation with a Weakly Singular Kernel. Axioms 2023, 12, 898. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, H.; Huo, H. Computational Scheme for the First-Order Linear Integro-Differential Equations Based on the Shifted Legendre Spectral Collocation Method. Mathematics 2022, 10, 4117. [Google Scholar] [CrossRef]
- Xie, J.; Wang, T.; Ren, Z.; Zhang, J.; Quan, L. Haar wavelet method for approximating the solution of a coupled system of fractional-order integral–differential equations. Math. Comput. Simul. 2019, 163, 80–89. [Google Scholar] [CrossRef]
- Kyselka, A. Properties of systems of integro-differential equations in the statistics of polymer chains. Polym. Sci. USSR 1977, 19, 2852–2858. [Google Scholar] [CrossRef]
- Holmåker, K. Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones. SIAM J. Math. Anal. 1993, 24, 116–128. [Google Scholar] [CrossRef]
- Adams, E.; Spreuer, H. Uniqueness and stability for boundary value problems with weakly coupled systems of nonlinear integro-differential equations and application to chemical reactions. J. Math. Anal. Appl. 1975, 49, 393–410. [Google Scholar] [CrossRef]
- Heydari, M.H.; Zhagharian, S.; Cattani, C. A projection method based on the piecewise Chebyshev cardinal functions for nonlinear stochastic ABC fractional integro-differential equations. Math. Meth. Appl. Sci. 2024, 47, 4530–4549. [Google Scholar] [CrossRef]
- Blank, L. Numerical treatment of differential equations of fractional order. Manch. Cent. Comput. Math. Numer. Anal. Rep. 1996, 287, 1–6. [Google Scholar]
- Li, X. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3934–3946. [Google Scholar] [CrossRef]
- Lakestani, M.; Dehghan, M.; Irandoust-pakchin, S. The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1149–1162. [Google Scholar] [CrossRef]
- Diethelm, K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 1997, 5, 1–6. [Google Scholar]
- Mason, J.C.; Handcomb, D.C. Chebyshev Polynomials; Chapman & Hall/CRC: Boca Raton, FL, USA, 2002; 3. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Co.: New York, NY, USA, 1960. [Google Scholar]
- Whittaker, T.; Watson, G.N. A Course of Modern Analysis; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Ji, T.; Hou, J.; Yang, C. The operational matrix of Chebyshev polynomials for solving pantograph-type Volterra integro-differential equations. Adv. Contin. Discret. Models 2022, 2022, 57. [Google Scholar] [CrossRef]
- Bagherzadeh Tavasani, B.; Refahi Sheikhani, A.H.; Aminikhah, H. Numerical Simulation of the Variable Order Fractional Integro-Differential Equation via Chebyshev Polynomials. Math. Notes 2022, 111, 688–700. [Google Scholar] [CrossRef]
- Bedratyuk, L.P.; Lunio, N.B. Derivations and Identities for Chebyshev Polynomials. Ukr. Math. J. 2022, 73, 1175–1188. [Google Scholar] [CrossRef]
- Mennouni, A. Improvement by projection for integro-differential equations. Math. Methods Appl. Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Mennouni, A. The iterated projection method for integro-differential equations with Cauchy kernel. J. Appl. Math. Inf. Sci. 2013, 31, 661–667. [Google Scholar] [CrossRef]
- Mennouni, A. A new efficient strategy for solving the system of Cauchy integral equations via two projection methods. Transylv. J. Math. Mech. 2022, 14, 63–71. [Google Scholar]
- Gavalas, G.R. Nonlinear Differential Equations of Chemically Reacting Systems; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1968. [Google Scholar]
- Sabatier, J.; Farges, C. Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used. AIMS Math. 2021, 6, 11318–11329. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods Fundamentals in Single Domains; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Saw, V.; Kumar, S. The Approximate Solution for Multi-term the Fractional Order Initial Value Problem Using Collocation Method Based on Shifted Chebyshev Polynomials of the First Kind. In Information Technology and Applied Mathematics; Chandra, P., Giri, D., Li, F., Kar, S., Jana, D., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 699. [Google Scholar]
n | ||
---|---|---|
4 | 5.5421 × 10−4 | 8.5478 × 10−4 |
7 | 7.6542 × 10−5 | 5.6548 × 10−6 |
9 | 4.2356 × 10−7 | 6.4587 × 10−7 |
15 | 8.6548 × 10−14 | 7.4587 × 10−13 |
21 | 7.4528 × 10−17 | 6.9875 × 10−16 |
n | ||
---|---|---|
6 | 3.7589 × 10−5 | 7.2546 × 10−5 |
8 | 6.2546 × 10−6 | 6.4548 × 10−5 |
10 | 3.2546 × 10−7 | 8.2746 × 10−6 |
14 | 6.2354 × 10−13 | 5.7854 × 10−11 |
20 | 5.2365 × 10−16 | 5.2546 × 10−15 |
n | [22] | The Present Approach ≤ |
---|---|---|
16 | 3.478023 × 10−4 | 6.356487 × 10−14 |
32 | 6.371379 × 10−5 | 7.256987 × 10−18 |
64 | 9.371983 × 10−7 | 9.264875 × 10−23 |
n | [22] | The Present Approach ≤ |
---|---|---|
16 | 5.371897 × 10−4 | 7.954216 × 10−14 |
32 | 8.381098 × 10−5 | 6.574821 × 10−18 |
64 | 2.387639 × 10−6 | 8.739128 × 10−22 |
[22] | [22] | Our Method ≤ | |
---|---|---|---|
0.03125 | 0.059 × 10−12 | 0.043 × 10−4 | 2.252 × 10−17 |
0.09375 | 0.043 × 10−12 | 0.115 × 10−4 | 1.120 × 10−17 |
0.18750 | 0.053 × 10−12 | 0.134 × 10−4 | 3.700 × 10−17 |
0.28125 | 0.024 × 10−12 | 0.145 × 10−4 | 2.100 × 10−17 |
0.37500 | 0.003 × 10−12 | 0.153 × 10−4 | 2.000 × 10−17 |
0.46875 | 0.064 × 10−12 | 0.160 × 10−4 | 2.000 × 10−17 |
0.56250 | 0.054 × 10−12 | 0.165 × 10−4 | 1.000 × 10−17 |
0.65625 | 0.009 × 10−12 | 0.170 × 10−4 | 1.000 × 10−17 |
0.75000 | 0.017 × 10−12 | 0.173 × 10−4 | 3.000 × 10−17 |
0.84375 | 0.031 × 10−12 | 0.177 × 10−4 | 0.000 × 10−17 |
0.93750 | 0.201 × 10−12 | 0.180 × 10−4 | 0.000 × 10−17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumen, A.; Mennouni, A.; Bouye, M. Contributions to the Numerical Solutions of a Caputo Fractional Differential and Integro-Differential System. Fractal Fract. 2024, 8, 201. https://doi.org/10.3390/fractalfract8040201
Moumen A, Mennouni A, Bouye M. Contributions to the Numerical Solutions of a Caputo Fractional Differential and Integro-Differential System. Fractal and Fractional. 2024; 8(4):201. https://doi.org/10.3390/fractalfract8040201
Chicago/Turabian StyleMoumen, Abdelkader, Abdelaziz Mennouni, and Mohamed Bouye. 2024. "Contributions to the Numerical Solutions of a Caputo Fractional Differential and Integro-Differential System" Fractal and Fractional 8, no. 4: 201. https://doi.org/10.3390/fractalfract8040201
APA StyleMoumen, A., Mennouni, A., & Bouye, M. (2024). Contributions to the Numerical Solutions of a Caputo Fractional Differential and Integro-Differential System. Fractal and Fractional, 8(4), 201. https://doi.org/10.3390/fractalfract8040201