Asymptotic Growth of Sample Paths of Tempered Fractional Brownian Motions, with Statistical Applications to Vasicek-Type Models
Abstract
:1. Introduction
2. Preliminaries of the Tempered Processes
- 1.
- 2.
- (i)
- If , then
- (ii)
- If , then
- 3.
- Covariance functions of tempered processes have the following form.
- 4.
- The next two properties follow from ([17], Proposition 2.4).
3. Asymptotic Behavior of Variances of TFBM and TFBMII at Zero and Upper Bounds for the Incremental Variances
3.1. Asymptotic Behavior of Variance of TFBM at Zero
- (i)
- For any
- (ii)
- For
- (iii)
- For any
- (i)
- For any and for all
- (ii)
- If , then for all
- (iii)
- For any and for all
3.2. Asymptotic Behavior of Variance of TFBMII at Zero
- (i)
- For any
- (ii)
- For
- (iii)
- For any
- (i)
- For any and for all
- (ii)
- For any and for all
- (iii)
- If , then for all
- (iv)
- For any and for all
- for , the process is not continuously differentiable for any ,
- for , the process is continuously differentiable for any ; moreover, it is times differeniable for .
4. Asymptotic Growth of the Trajectories of TFBM and TFBMII with Probability 1
4.1. Asymptotic Growth of the Trajectories of TFBM with Probability 1
4.2. Asymptotic Growth of the Trajectories of TFBMII with Probability 1
- (i)
- If , then there exists such that
- (ii)
- If , then there exists such that
- (1)
- If , then
- (2)
- If , then
5. Drift Parameter Estimation in the Vasicek-Type Model
5.1. Strongly Consistent Drift Estimation in the Fractional Tempered Vasicek Model
5.2. Possible Generalization and Related Models
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proofs of Lemmas 1 and 3
- (i)
- If , then
- (ii)
- If , then
- (iii)
- If , H is non-integer, then
- (iv)
- if , then
Appendix B. Asymptotic Growth of Trajectories of Gaussian Process
- (i)
- There exist and such that
- (ii)
- and .
- (iii)
- There exists such that
References
- Meerschaert, M.M.; Sabzikar, F. Tempered fractional Brownian motion. Stat. Probab. Lett. 2013, 83, 2269–2275. [Google Scholar] [CrossRef]
- Sabzikar, F.; Surgailis, D. Tempered fractional Brownian and stable motions of second kind. Stat. Probab. Lett. 2018, 132, 17–27. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sabzikar, F. Tempered fractional stable motion. J. Theoret. Probab. 2016, 29, 681–706. [Google Scholar] [CrossRef]
- Meerschaert, M.; Sabzikar, F.; Phanikumar, M.; Zeleke, A. Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech. Theory Exp. 2014, 2014, P09023. [Google Scholar] [CrossRef]
- Boniece, B.C.; Didier, G.; Sabzikar, F. Tempered fractional Brownian motion: Wavelet estimation, modeling and testing. Appl. Comput. Harmon. Anal. 2021, 51, 461–509. [Google Scholar] [CrossRef]
- Boniece, B.C.; Sabzikar, F.; Didier, G. Tempered Fractional Brownian Motion: Wavelet Estimation and Modeling of Turbulence in Geophysical Flows. In Proceedings of the 2018 IEEE Statistical Signal Processing Workshop (SSP), Freiburg im Breisgau, Germany, 10–13 June 2018; pp. 174–178. [Google Scholar]
- Zeng, C.; Yang, Q.; Chen, Y. Bifurcation dynamics of the tempered fractional Langevin equation. Chaos 2016, 26, 084310. [Google Scholar] [CrossRef]
- Liemert, A.; Sandev, T.; Kantz, H. Generalized Langevin equation with tempered memory kernel. Physica A 2017, 466, 356–369. [Google Scholar] [CrossRef]
- Vasicek, O. An equilibrium characterization of the term structure. J. Financ. Econ. 1977, 5, 177–188. [Google Scholar] [CrossRef]
- Xiao, W.; Yu, J. Asymptotic theory for estimating drift parameters in the fractional Vasicek model. Econom. Theory 2019, 35, 198–231. [Google Scholar] [CrossRef]
- Xiao, W.; Yu, J. Asymptotic theory for rough fractional Vasicek models. Econom. Lett. 2019, 177, 26–29. [Google Scholar] [CrossRef]
- Tanaka, K.; Xiao, W.; Yu, J. Maximum likelihood estimation for the fractional Vasicek model. Econometrics 2020, 8, 32. [Google Scholar] [CrossRef]
- Prakasa Rao, B.L.S. Maximum likelihood estimation for sub-fractional Vasicek model. Random Oper. Stoch. Equ. 2021, 29, 265–277. [Google Scholar] [CrossRef]
- Prakasa Rao, B.L.S. Maximum Likelihood Estimation in the Mixed Fractional Vasicek model. J. Indian Soc. Probab. Stat. 2021, 22, 9–25. [Google Scholar]
- Es-Sebaiy, K.; Es. Sebaiy, M. Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. Stat. Methods Appl. 2021, 30, 409–436. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Lu, Y. Two Types of Gaussian Processes and their Application to Statistical Estimations for Non-ergodic Vasicek Model. arXiv 2023, arXiv:2310.00885. [Google Scholar]
- Azmoodeh, E.; Mishura, Y.; Sabzikar, F. How does tempering affect the local and global properties of fractional Brownian motion? J. Theor. Probab. 2022, 35, 484–527. [Google Scholar] [CrossRef]
- Dozzi, M.; Kozachenko, Y.; Mishura, Y.; Ralchenko, K. Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation. Stat. Inference Stoch. Process. 2018, 21, 21–52. [Google Scholar] [CrossRef]
- Kozachenko, Y.; Melnikov, A.; Mishura, Y. On drift parameter estimation in models with fractional Brownian motion. Statistics 2015, 49, 35–62. [Google Scholar] [CrossRef]
- Kahane, J.P. Hélices et quasi-hélices. In Mathematical Analysis and Applications, Part B; Academic Press: New York, NY, USA; London, UK, 1981; Volume 7b, pp. 417–433. [Google Scholar]
- Mishura, Y.S. Stochastic Calculus for Fractional Brownian Motion and Related Processes. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1929, pp. xviii + 393. [Google Scholar] [CrossRef]
- Azmoodeh, E.; Sottinen, T.; Viitasaari, L.; Yazigi, A. Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Statist. Probab. Lett. 2014, 94, 230–235. [Google Scholar] [CrossRef]
- Norros, I.; Valkeila, E.; Virtamo, J. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 1999, 5, 571–587. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sabzikar, F. Stochastic integration for tempered fractional Brownian motion. Stoch. Processes Appl. 2014, 124, 2363–2387. [Google Scholar] [CrossRef] [PubMed]
- Benassi, A.; Jaffard, S.; Roux, D. Elliptic Gaussian random processes. Rev. Mat. Iberoam. 1997, 13, 19–90. [Google Scholar] [CrossRef]
- Mishura, Y.; Ralchenko, K.; Shklyar, S. Gaussian Volterra processes: Asymptotic growth and statistical estimation. Theory Probab. Math. Statist. 2023, 108, 149–167. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishura, Y.; Ralchenko, K. Asymptotic Growth of Sample Paths of Tempered Fractional Brownian Motions, with Statistical Applications to Vasicek-Type Models. Fractal Fract. 2024, 8, 79. https://doi.org/10.3390/fractalfract8020079
Mishura Y, Ralchenko K. Asymptotic Growth of Sample Paths of Tempered Fractional Brownian Motions, with Statistical Applications to Vasicek-Type Models. Fractal and Fractional. 2024; 8(2):79. https://doi.org/10.3390/fractalfract8020079
Chicago/Turabian StyleMishura, Yuliya, and Kostiantyn Ralchenko. 2024. "Asymptotic Growth of Sample Paths of Tempered Fractional Brownian Motions, with Statistical Applications to Vasicek-Type Models" Fractal and Fractional 8, no. 2: 79. https://doi.org/10.3390/fractalfract8020079
APA StyleMishura, Y., & Ralchenko, K. (2024). Asymptotic Growth of Sample Paths of Tempered Fractional Brownian Motions, with Statistical Applications to Vasicek-Type Models. Fractal and Fractional, 8(2), 79. https://doi.org/10.3390/fractalfract8020079