A Temporal Second-Order Difference Scheme for Variable-Order-Time Fractional-Sub-Diffusion Equations of the Fourth Order
Abstract
:1. Introduction
2. The Compact Finite Difference Scheme
3. Existence and Uniqueness
4. Convergence and Stability Analysis
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kobelev, Y.L.; Kobelev, L.Y.; Klimontovich, Y.L. Statistical physics of dynamic systems with variable memory. Dokl. Phys. 2003, 48, 285–289. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Wei, H.; Chen, Y.Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193, 185–192. [Google Scholar]
- Zhang, H.; Liu, F.; Phanikumar, M.S.; Meerschaert, M.M. A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 2013, 66, 693–701. [Google Scholar] [CrossRef]
- Obembe, A.D.; Hossain, M.E.; Abu-Khamsin, S.A. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Pet. Sci. Eng. 2017, 152, 391–405. [Google Scholar] [CrossRef]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef]
- Diaz, G.; Coimbra, C.F.M. Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 2009, 56, 145–157. [Google Scholar] [CrossRef]
- Cooper, G.R.J.; Cowan, D.R. Filtering using variable order vertical derivatives. Comput. Geosci. 2004, 30, 455–459. [Google Scholar] [CrossRef]
- Tadjeran, C.; Meerschaert, M.M.; Scheffler, H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213, 205–213. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Anh, V.; Turner, I. Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32, 1740–1760. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Z.Z.; Karniadakis, G.E. Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 2015, 293, 184–200. [Google Scholar] [CrossRef]
- Shivanian, E. Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis. Numer. Methods Partial Differ. Equat. 2017, 33, 974–994. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, A.; Li, X.; Wang, H. A fast solution technique for finite element discretization of the space–time fractional diffusion equation. Appl. Numer. Math. 2017, 119, 146–163. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Y.; Li, H.; Wang, J. Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Comput. Math. Appl. 2018, 75, 3521–3536. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhu, P.Y.; Luo, W.H. A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term. Appl. Math. Comput. 2018, 336, 231–248. [Google Scholar] [CrossRef]
- El-Sayed, A.A.; Agarwal, P. Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. Math. Methods Appl. Sci. 2019, 42, 3978–3991. [Google Scholar] [CrossRef]
- Hajipour, M.; Jajarmi, A.; Baleanu, D.; Sun, H. On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 119–133. [Google Scholar] [CrossRef]
- Du, R.; Alikhanov, A.A.; Sun, Z.Z. Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations. Comput. Math. Appl. 2020, 79, 2952–2972. [Google Scholar] [CrossRef]
- Gu, X.M.; Sun, H.W.; Zhao, Y.L.; Zheng, X. An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order. Appl. Math. Lett. 2021, 120, 107270. [Google Scholar] [CrossRef]
- Garrappa, R.; Giusti, A.; Mainardi, F. Variable-order fractional calculus: A change of perspective. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105904. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, Z.W.; Sun, H.W. Robust fast method for variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. Appl. Math. Comput. 2022, 430, 127273. [Google Scholar] [CrossRef]
- Sun, L.Y.; Lei, S.L.; Sun, H.W. Efficient finite difference scheme for a hidden-memory variable-order time-fractional diffusion equation. Comput. Appl. Math. 2023, 42, 362. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, H.; Zhang, Y.; Sun, H.W.; Lin, J. A novel meshless method based on RBF for solving variable-order time fractional advection-diffusion-reaction equation in linear or nonlinear systems. Comput. Math. Appl. 2023, 142, 107–120. [Google Scholar] [CrossRef]
- Sun, Z. The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations; Science Press: Beijing, China, 2009. [Google Scholar]
- Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef]
- Lax, P.D.; Richtmyer, R.D. Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 1956, 9, 267–293. [Google Scholar] [CrossRef]
- Ji, C.C.; Sun, Z.Z. A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 2015, 64, 959–985. [Google Scholar] [CrossRef]
1/10 | 8.794433 | ||
1/20 | 2.184325 | 2.0094 | |
1/40 | 5.435953 | 2.0066 | |
1/80 | 1.354184 | 2.0051 | |
1/160 | 3.361582 | 2.0102 | |
1/10 | 6.611430 | ||
1/20 | 1.647638 | 2.0046 | |
1/40 | 4.103318 | 2.0055 | |
1/80 | 1.019858 | 2.0084 | |
1/160 | 2.554354 | 1.9973 | |
1/10 | 9.074528 | ||
1/20 | 2.261408 | 2.0046 | |
1/40 | 5.626816 | 2.0068 | |
1/80 | 1.400681 | 2.0062 | |
1/160 | 3.467035 | 2.0144 |
h | ||||
---|---|---|---|---|
6.585513 | ||||
4.278681 | 3.9441 | |||
2.650930 | 4.0126 | |||
1.646259 | 4.0092 | |||
1.024713 | 4.0059 | |||
4.405910 | ||||
2.884598 | 3.9330 | |||
1.791444 | 4.0092 | |||
1.114702 | 4.0064 | |||
6.960226 | 4.0014 | |||
6.852871 | ||||
4.471970 | 3.9377 | |||
2.768960 | 4.0135 | |||
1.718657 | 4.0100 | |||
1.069261 | 4.0066 |
h | ||||
---|---|---|---|---|
2.409320 | ||||
1.549210 | 3.9590 | |||
9.445871 | 4.0357 | |||
5.794117 | 4.0270 | |||
3.576473 | 4.0180 | |||
1.816586 | ||||
1.186513 | 3.9364 | |||
7.299520 | 4.0228 | |||
4.512097 | 4.0159 | |||
2.803956 | 4.0083 | |||
2.560157 | ||||
1.647386 | 3.9580 | |||
1.000595 | 4.0412 | |||
6.117342 | 4.0318 | |||
3.767160 | 4.0214 |
1/10 | 2.740388 | ||
1/20 | 6.789080 | 2.0131 | |
1/40 | 1.677644 | 2.0168 | |
1/80 | 4.144795 | 2.0171 | |
1/160 | 1.023590 | 2.0177 | |
1/10 | 2.135416 | ||
1/20 | 5.336100 | 2.0007 | |
1/40 | 1.325432 | 2.0093 | |
1/80 | 3.285335 | 2.0124 | |
1/160 | 8.168648 | 2.0079 | |
1/10 | 2.893380 | ||
1/20 | 7.180678 | 2.0106 | |
1/40 | 1.771918 | 2.0188 | |
1/80 | 4.368764 | 2.0200 | |
1/160 | 1.075720 | 2.0219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Bo, Y.; Jin, Y. A Temporal Second-Order Difference Scheme for Variable-Order-Time Fractional-Sub-Diffusion Equations of the Fourth Order. Fractal Fract. 2024, 8, 112. https://doi.org/10.3390/fractalfract8020112
Zhang X, Bo Y, Jin Y. A Temporal Second-Order Difference Scheme for Variable-Order-Time Fractional-Sub-Diffusion Equations of the Fourth Order. Fractal and Fractional. 2024; 8(2):112. https://doi.org/10.3390/fractalfract8020112
Chicago/Turabian StyleZhang, Xin, Yu Bo, and Yuanfeng Jin. 2024. "A Temporal Second-Order Difference Scheme for Variable-Order-Time Fractional-Sub-Diffusion Equations of the Fourth Order" Fractal and Fractional 8, no. 2: 112. https://doi.org/10.3390/fractalfract8020112
APA StyleZhang, X., Bo, Y., & Jin, Y. (2024). A Temporal Second-Order Difference Scheme for Variable-Order-Time Fractional-Sub-Diffusion Equations of the Fourth Order. Fractal and Fractional, 8(2), 112. https://doi.org/10.3390/fractalfract8020112