Next Article in Journal
Local Singularity Spectrum: An Innovative Graphical Approach for Analyzing Detrital Zircon Geochronology Data in Provenance Analysis
Next Article in Special Issue
A Novel Numerical Method for Solving Nonlinear Fractional-Order Differential Equations and Its Applications
Previous Article in Journal
Advancements in Best Proximity Points: A Study in F-Metric Spaces with Applications
Previous Article in Special Issue
Fractional Diffusion Equation under Singular and Non-Singular Kernel and Its Stability
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient

School of Mathematics, Yunnan Normal University, Kunming 650500, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2024, 8(1), 63; https://doi.org/10.3390/fractalfract8010063
Submission received: 12 November 2023 / Revised: 29 December 2023 / Accepted: 1 January 2024 / Published: 17 January 2024

Abstract

:
In this paper, we derive an explicit formula of solutions to Hilfer linear fractional integro-differential equations with a variable coefficient in a weighted space, and obtain the existence and uniqueness of solutions for fractional kinetic equations and fractional integro-differential equations with a generalized Mittag–Leffler function. An example is given to illustrate the result obtained.

1. Introduction

Fractional calculus is an important tool which is used to describe abundant phenomena, such as viscoelasticity, relaxation vibrations, nonlinear oscillations of earthquakes, mechanics, etc. It has attracted the interest of researchers from various areas [1,2,3,4,5,6,7].
The majority of previous studies have been devoted to the Riemann–Liouville and Caputo fractional derivatives. In 2000, Hilfer [8] introduced a fractional differential operator H D a + α , β . It becomes the Riemann–Liouville differential operator D a + α when β = 0 , and becomes the Caputo differential operator c D a + α when β = 1 . Recently, Hilfer fractional differential equations (FDEs) have attracted many researchers (see [8,9] and references therein). For instance, the Hilfer derivative can be applied in regular variation in thermodynamics (see, e.g., [8]).
Due to the complexity of FDEs with variable coefficients, it is very difficult to obtain their exact solutions, so there are very few results on this topic. Some results for exact solutions of linear FDEs can be found in [10,11,12,13,14]. In [14], the authors used a modified Hilfer derivative to study the following initial value problem:
( H D a + α , β x ) ( t ) + σ ( t ) x ( t ) = f ( t ) , t ( a , T ] , a > 0 , ( I a + 1 γ x ) ( a + ) = x 0 ,
where σ ( t ) is a continuous function. Under the assumption σ C I a + α e v t C e v t for some v R and 0 < C < 1 , the authors obtained the existence and uniqueness of solutions for the above problem. In many cases, how to obtain exact solutions of FDEs with variable coefficients is an open question.
In this paper, we study the following initial value problem of fractional kinetic differential equations:
( H D a + α , β x ) ( t ) λ ( t ) ( I a + η x ) ( t ) = f ( t ) , t J = ( a , T ] , ( I a + 1 γ x ) ( a + ) = x 0 ,
and the following initial value problem of fractional integro-differential equations:
( H D a + α , β x ) ( t ) λ ( t ) ( E ρ , ω , θ ; a + x ) ( t ) = f ( t ) , t J = ( a , T ] , ( I a + 1 γ x ) ( a + ) = x 0 ,
where E ρ , ω , θ ; a + is an integral operator with a generalized Mittag–Leffler function as follows:
( E ρ , ω , θ ; a + x ) ( t ) : = a t ( t s ) ω 1 E ρ , ω ( θ ( t s ) ρ ) x ( s ) d s , t > a .
Firstly, we present the characterization of the space C 1 η η . Secondly, based on Definition 3, without the contraction assumption on the coefficient function λ ( t ) , we obtain the existence and uniqueness of solutions for the above problems in the weighted space C 1 γ , ν α , β . To the best of our knowledge, very few references can be found in the literature discussing the existence and uniqueness of solutions for a class of fractional integro-differential equations with Hilfer fractional derivatives and variable coefficients.
This article is arranged as follows: In Section 2, we recall the main definitions and properties of the Hilfer fractional derivative and generalized Mittag–Leffler functions. In Section 3 and Section 4, we investigate the existence and uniqueness of solutions for Problems (1) and (2) using the generalized Banach’s fixed point theorem. Finally, we present an example to illustrate our result.

2. Preliminaries

In this section we present some definitions and conclusions that are essential throughout the paper.

2.1. Fractional Integral and Derivatives

Definition 1 
([3]). Let α ( 0 , 1 ] . The left-sided Riemann–Liouville fractional integral of f ( t ) is defined by
( I a + α f ) ( t ) = 1 Γ ( α ) a t ( t s ) α 1 f ( s ) d s , t > a ,
if the integral exists, where Γ ( · ) is the Gamma function.
Definition 2 
([3]). Let α ( 0 , 1 ) . The left-sided Riemann–Liouville fractional derivative of f ( t ) is defined by
( D a + α f ) ( t ) = d d t ( I a + 1 α f ) ( t ) = 1 Γ ( 1 α ) d d t a t ( t s ) α f ( s ) d s ,
if the integral exists.
In [14], the authors presented the following modified Hilfer derivative:
Definition 3 
([14]). The left-sided Hilfer fractional derivative of f ( t ) is defined by:
H D a + α , β f ( t ) = D a + 1 γ + α [ ( I a + 1 γ f ) ( t ) ( I a + 1 γ f ) ( a + ) ] ,
where α ( 0 , 1 ) , β [ 0 , 1 ] and γ = α + β ( 1 α ) .
We list some function spaces in the following definition.
Definition 4 
([9,14]). Let 0 μ < 1 , 0 ν < 1 and 0 η < 1 .
(i) 
We denote by C [ a , b ] the space of continuous functions x on [ a , b ] with the norm x C = max t [ a , b ] | x ( t ) | .
(ii) 
We denote the weighted space
C μ [ a , b ] : = { x : ( a , b ] R ; ( t a ) μ x ( t ) C [ a , b ] } and x C μ = max t [ a , b ] | ( t a ) μ x ( t ) | .
(iii) 
We denote the weighted space
C μ n [ a , b ] : = { x C n 1 [ a , b ] ; x ( n ) C μ [ a , b ] , n N } ,
with the norm x C μ n = k = 0 n 1 x ( k ) C + x ( n ) C μ .
(iv) 
We denote the weighted space
C μ η [ a , b ] = { x C μ [ a , b ] ; D a + η x C μ [ a , b ] } ,
with the norm x C μ η = x C μ + D a + η x C μ .
(v) 
We denote the weighted space
C μ , ν α , β [ a , b ] = { x C μ [ a , b ] ; H D a + α , β x C ν [ a , b ] } ,
with the norm x C μ , ν α , β = x C μ + H D a + α , β x C ν .
Clearly, C 0 [ a , b ] = C [ a , b ] . We abbreviate C [ a , T ] , C μ [ a , T ] , C μ n [ a , T ] , C μ η [ a , T ] , C μ , ν α , β [ a , T ] with C , C μ , C μ n , C μ η , C μ , ν α , β , respectively.
Theorem 1 
([3]). Let 0 < η < 1 , then, D a + η x ( t ) = 0 if, and only if, x ( t ) = C ( t a ) η 1 , where C is an arbitrary constant.
Lemma 1 
([3]). Let ω > 0 , ν [ 0 , 1 ) and ν ω , if y C ν , then, ( I a + ω y ) ( t ) C .
Lemma 2 
([3]). Let ω , ν > 0 , if ν > ω and y C ν , then, ( I a + ω y ) ( t ) C ν ω .
Lemma 3 
([9]). Let ω ( 0 , 1 ) and ω > ν , if y C ν , then, I a + ω y ( a + ) = lim t a + I a + ω y ( t ) = 0 .
Lemma 4 
([3]). Let ω 1 , ω 2 > 0 , 0 ν < 1 , then, for φ C ν , the following assertions are valid:
( I a + ω 1 I a + ω 2 φ ) ( t ) = ( I a + ω 1 + ω 2 φ ) ( t ) , ( D a + ω 1 I a + ω 1 φ ) ( t ) = φ ( t ) , ( D a + ω 2 I a + ω 1 φ ) ( t ) = ( I a + ω 1 ω 2 φ ) ( t ) , for ω 1 > ω 2 .
Lemma 5 
([3,9]). Let ω , ξ > 0 and θ > 0 , then,
I a + ω ( s a ) ξ 1 ( t ) = Γ ( ξ ) Γ ( ξ + ω ) ( t a ) ξ + ω 1 , t > a , D a + ω ( s a ) ω j ( t ) = 0 , j = 1 , 2 , , [ ω ] + 1 , t > a , D a + ω ( s a ) ξ 1 ( t ) = Γ ( ξ ) Γ ( ξ ω ) ( t a ) ξ ω 1 , t > a , ω < ξ .
Lemma 6 
([3]). Let ω ( 0 , 1 ) and ν [ 0 , 1 ) . If y C ν and I a + 1 ω y C ν 1 , then,
I a + ω D a + ω y ( t ) = y ( t ) ( I a + 1 ω y ) ( a + ) Γ ( ω ) ( t a ) ω 1 .
Theorem 2. 
Let 0 < η < 1 , then, f C 1 η η if, and only if, there exists a function φ C 1 η such that
f ( t ) = ( I a + η φ ) ( t ) + c ( t a ) η 1 , t ( a , T ] ,
where c is an arbitrary constant.
Proof. 
Let f C 1 η η . According to Definition 4(iv), there exists a function φ ( t ) C 1 η such that ( D a + η f ) ( t ) = φ ( t ) ,
that is
D a + η [ f ( t ) I a + η φ ( t ) ] = 0 .
From Theorem 1, for an arbitrary constant c, we obtain f ( t ) = ( I a + η φ ) ( t ) + c ( t a ) η 1 ; clearly, ( I a + 1 η f ) ( a + ) Γ ( η ) = c . Conversely, if f satisfies Equation (3), then, f ( t ) C 1 η , and
D a + η f ( t ) = φ ( t ) C 1 η ,
hence, f C 1 η η . □

2.2. Generalized Mittag–Leffler Functions

Definition 5 
([3,15]). For ρ , ω , ζ > 0 , l , z R , the generalized Mittag–Leffler function E ρ , ω ( z ) and the generalized Mittag–Leffler function E ρ , ζ , l ( z ) are defined by the following series, respectively:
E ρ , ω ( z ) = k = 0 + z k Γ ( ρ k + ω ) , E ρ , ζ , l ( z ) = k = 0 + d k z k , ρ ( i ζ + l ) + 1 Z ( i N ) ,
where d 0 = 1 and
d k = i = 0 k 1 Γ ρ ( i ζ + l ) + 1 Γ ρ ( i ζ + l + 1 ) + 1 .
Definition 6 
([16]). For ρ , ω , σ > 0 , z R , the generalized Mittag–Leffler function E ρ , ω σ ( z ) is defined by the following series
E ρ , ω σ ( z ) = k = 0 + ( σ ) k Γ ( ρ k + ω ) z k k ! ,
where ( σ ) k is the Pochhammer symbol
( σ ) 0 = 1 , ( σ ) k = σ ( σ + 1 ) ( σ + k 1 ) , k = 1 , 2 , .
Clearly, E ρ , ω 1 ( z ) = E ρ , ω ( z ) .
Lemma 7 
([15]). Let ρ , ω , δ ( 0 , 1 ) , θ > 0 . The generalized Mittag–Leffler functions E ρ , ω ( · ) , E ρ , ρ + δ ( · ) are non-negative and have the following properties:
(i) 
for t > a , E ρ , ω ( θ ( t a ) ρ ) 1 Γ ( ω ) and E ρ , ρ + δ ( θ ( t a ) ρ ) 1 Γ ( ρ + δ ) ;
(ii) 
for t 1 , t 2 > 0 , | E ρ , ω ( θ t 2 ρ ) E ρ , ω ( θ t 1 ρ ) | : = O ( | t 2 t 1 | ρ ) , t 2 t 1 ;
(iii) 
for κ ( 0 , 1 ) ,
a t ( t s ) ω 1 E ρ , ω ( θ ( t s ) ρ ) ( s a ) κ 1 d s = Γ ( κ ) ( t a ) ω + κ 1 E ρ , ω + κ ( θ ( t a ) ρ ) .
We denote the integral operator E ρ , ω , θ ; a + σ (see [17]) as follows:
( E ρ , ω , θ ; a + σ φ ) ( t ) : = a t ( t s ) ω 1 E ρ , ω σ ( θ ( t s ) ρ ) φ ( s ) d s , t > a , φ C ν .
In particular, E ρ , ω 0 ( θ t ρ ) = 1 Γ ( ω ) (see [17]); hence,
( E ρ , ω , θ ; a + 0 φ ) ( t ) = ( I a + ω φ ) ( t ) , t > a .
Lemma 8 
([17]). For ρ , ω 1 , ω 2 , σ 1 , σ 2 , α , θ > 0 , κ ( 0 , 1 ) and φ C ν ,
E ρ , ω 1 , θ ; a + σ 1 E ρ , ω 2 , θ ; a + σ 2 φ ( t ) = E ρ , ω 1 + ω 2 , θ ; a + σ 1 + σ 2 φ ( t ) ; I a + α E ρ , ω 1 , θ ; a + σ 1 φ ( t ) = E ρ , ω 1 , θ ; a + σ 1 I a + α φ ( t ) = E ρ , ω 1 + α , θ ; a + σ 1 φ ( t ) ; ( E ρ , ω 1 , θ ; a + σ 1 ( s a ) κ 1 ) ( t ) = Γ ( κ ) ( t a ) ω 1 + κ 1 E ρ , ω 1 + κ σ 1 ( θ ( t a ) ρ ) .
Lemma 9. 
Let ρ , ω ( 0 , 1 ) , θ > 0 and ν [ 0 , 1 ) , then, the integral operator E ρ , ω , θ ; a + has the following properties:
(i) 
E ρ , ω , θ ; a + is a bounded operator from C ν into C ν ;
(ii) 
if ν > ω and φ C ν , then, ( E ρ , ω , θ ; a + φ ) ( t ) C ν ω .
Proof. 
It is easy to see that
| ( E ρ , ω , θ ; a + φ ) ( t ) | φ C ν Γ ( ω ) a t ( t s ) ω 1 ( s a ) ν d s ( t a ) ω ν Γ ( 1 ν ) Γ ( ω + 1 ν ) φ C ν .
Let h > 0 , t , t + h [ a , T ] ; we have
| ( t + h a ) ν ( E ρ , ω , θ ; a + φ ) ( t + h ) ( t a ) ν ( E ρ , ω , θ ; a + φ ) ( t ) | | ( t + h a ) ν ( t a ) ν | | ( E ρ , ω , θ ; a + φ ) ( t + h ) | + ( t a ) ν | ( E ρ , ω , θ ; a + φ ) ( t + h ) ( E ρ , ω , θ ; a + φ ) ( t ) | | ( t + h a ) ν ( t a ) ν | | ( E ρ , ω , θ ; a + φ ) ( t + h ) | + ( t a ) ν a t | ( t + h s ) ω 1 E ρ , ω ( θ ( t + h s ) ρ ) ( t s ) ω 1 E ρ , ω ( θ ( t s ) ρ ) | | φ ( s ) | d s + ( t a ) ν t t + h | ( t + h s ) ω 1 E ρ , ω ( θ ( t + h s ) ρ ) | | φ ( s ) | d s : = J 1 + J 2 + J 3 ,
where
J 1 = | ( t + h a ) ν ( t a ) ν | | ( E ρ , ω , θ ; a + φ ) ( t + h ) | , J 2 = ( t a ) ν a t | ( t + h s ) ω 1 E ρ , ω ( θ ( t + h s ) ρ ) ( t s ) ω 1 E ρ , ω ( θ ( t s ) ρ ) | | φ ( s ) | d s , J 3 = ( t a ) ν t t + h | ( t + h s ) ω 1 E ρ , ω ( θ ( t + h s ) ρ ) | | φ ( s ) | d s .
For J 1 , we have
J 1 | 1 ( t a t + h a ) ν | ( t + h a ) ω Γ ( 1 ν ) Γ ( ω + 1 ν ) φ C ν 0 , h 0 + .
Using Lemma 7(ii), we find
J 2 = ( t a ) φ C ν 1 ν O ( h ρ ) 0 , h 0 + .
For J 3 , we derive the estimate
J 3 ( t a ) ν a t + h | ( t + h s ) ω 1 E ρ , ω ( θ ( t + h s ) ρ ) | | φ ( s ) | d s t a t + h a ν Γ ( 1 ν ) Γ ( ω + 1 ν ) ( t + h a ) ω φ C ν ;
hence, J 3 0 as h 0 + . Therefore,
| ( t + h a ) ν ( E ρ , ω , θ ; a + φ ) ( t + h ) ( t a ) ν ( E ρ , ω , θ ; a + φ ) ( t ) | 0 , h 0 + .
Similarly, we can prove that
| ( t + h a ) ν ( E ρ , ω , θ ; a + φ ) ( t + h ) ( t a ) ν ( E ρ , ω , θ ; a + φ ) ( t ) | 0 , h 0 .
Thus, ( E ρ , ω , θ ; a + φ ) ( t ) C ν . Moreover,
( t a ) ν | ( E ρ , ω , θ ; a + φ ) ( t ) | ( t a ) ν Γ ( ω ) a t ( t s ) ω 1 ( s a ) ν d s φ C ν ( T a ) ω Γ ( 1 ν ) Γ ( ω + 1 ν ) φ C ν ,
which completes the proof of (i). The proof of (ii) is similar to that of (i). □

3. Equivalent Integral Equation

We consider the following linear Hilfer fractional differential equation
( H D a + α , β x ) ( t ) = f ( t ) , t ( a , T ]
with the initial condition
( I a + 1 γ x ) ( a + ) = x 0 .
We study the above problem in the weighted space C 1 γ , ν α , β , where
α < ν < 1 γ + α .
Theorem 3. 
Let f : ( a , T ] R and f ( t ) C ν , then, x C 1 γ , ν α , β satisfies Problems (4) and (5) if, and only if, x satisfies the following relation
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + ( I a + α f ) ( t ) .
Proof. 
In view of Equation (6) and Lemma 3, for x ( t ) C 1 γ , ν α , β and f C ν , we obtain
( I a + 1 γ + α x ) ( a + ) = 0 , ( I a + 1 γ + α f ) ( a + ) = 0 .
Since x ( t ) C 1 γ , ν α , β , from Definition 3 and Definition 4(iv), we can see that
( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) C ν 1 γ + α .
By Theorem 2 and I a + γ α ( ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ) ( a + ) = 0 , there exists a function φ ( t ) C ν such that
( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) = ( I a + 1 γ + α φ ) ( t ) ,
and hence,
I a + γ α ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) = ( I a + 1 φ ) ( t ) .
This means I a + γ α ( ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ) C ν 1 , from Lemma 6 and the fact
I a + γ α ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ( a + ) = 0 ,
one obtains
I a + 1 γ + α D a + 1 γ + α [ ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ] = ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) I a + γ α ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ( a + ) ( t a ) α γ Γ ( 1 γ + α ) = ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) .
Therefore,
I a + α H D a + α , β x ( t ) = I a + α D a + 1 γ + α [ ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ] = [ D a + 1 γ I a + 1 γ ] I a + α D a + 1 γ + α [ ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ] = D a + 1 γ [ I a + 1 γ + α D a + 1 γ + α ] [ ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) ] = D a + 1 γ ( I a + 1 γ x ) ( t ) ( I a + 1 γ x ) ( a + ) = x ( t ) ( t a ) γ 1 Γ ( γ ) x 0 .
Now, applying I a + α to both sides of Equation (4), we obtain Equation (7).
If x ( t ) satisfies Equation (7), since I a + α f C ν α C 1 γ and ( t a ) γ 1 Γ ( γ ) x 0 C 1 γ , then, x C 1 γ . Moreover, note that
I a + 1 γ x ( t ) = I a + 1 γ ( t a ) γ 1 Γ ( γ ) x 0 + ( I a + 1 γ + α f ) ( t ) = x 0 + ( I a + 1 γ + α f ) ( t ) ,
and ( I a + 1 γ + α f ) ( a + ) = 0 , then, by Equation (8), one has ( I a + 1 γ x ) ( a + ) = x 0 and
D a + 1 γ + α [ I a + 1 γ x ( t ) I a + 1 γ x ( a + ) ] = f ( t ) C ν .
This means x ( t ) C 1 γ , ν α , β and H D a + α , β x ( t ) = f ( t ) ; now, we obtain Equation (4). The results are proved completely. □
Similarly, we can obtain the result for the nonlinear case; we omit the proof here.
Theorem 4. 
Let f : ( a , T ] R be a function such that f ( t , ( I a + η x ) ( t ) ) C ν for any x ( t ) C 1 γ and η ( 0 , 1 ) . If x ( t ) C 1 γ , ν α , β , then, x satisfies
( H D a + α , β x ) ( t ) = f ( t , ( I a + η x ) ( t ) ) , t J = ( a , T ] , ( I a + 1 γ x ) ( a + ) = x 0 ,
if, and only if, x satisfies
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + 1 Γ ( α ) a t ( t s ) α 1 f ( s , ( I a + η x ) ( s ) ) d s .
Theorem 5. 
Let f : ( a , T ] R be a function such that f ( t , ( E ρ , ω , θ ; a + x ) ( t ) ) C ν for any x ( t ) C 1 γ and ρ , ω ( 0 , 1 ) , θ > 0 . If x ( t ) C 1 γ , ν α , β , then, x satisfies
( H D a + α , β x ) ( t ) = f ( t , ( E ρ , ω , θ ; a + x ) ( t ) ) , t J = ( a , T ] , ( I a + 1 γ x ) ( a + ) = x 0 ,
if, and only if, x satisfies
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + 1 Γ ( α ) a t ( t s ) α 1 f ( s , ( E ρ , ω , θ ; a + x ) ( s ) ) d s .

4. Exact Solutions of Two Kinds of Fractional Integro-Differential Equations

In this section, we study two kinds of initial value problems for fractional integro-differential equations with a variable coefficient.

4.1. Solutions of a Fractional Kinetic Equation

Firstly, we present the following lemma:
Lemma 10. 
For 0 ζ < η < ν , λ ( t ) C ζ and Φ ( t ) C ν , the integral equation
y ( t ) = Φ ( t ) + λ ( t ) ( I a + η y ) ( t )
has a unique solution y C ν given by
y ( t ) = k = 0 + λ ( t ) I a + η k Φ ( t ) .
Proof. 
Since ( I a + η y ) ( t ) C ν η and λ ( t ) ( I a + η y ) ( t ) C ν η + ζ C ν , we define an operator F : C ν C ν as follows:
( F y ) ( t ) = Φ ( t ) + λ ( t ) ( I a + η y ) ( t ) .
Clearly, F is well defined and a fixed point of F is a solution of Equation (9). Since
a t ( t s ) θ 1 1 ( s a ) θ 2 1 d s = ( t a ) θ 1 + θ 2 1 · Γ ( θ 1 ) Γ ( θ 2 ) Γ ( θ 1 + θ 2 ) , 0 < θ 1 , θ 2 < 1 ,
for y , y ˜ C ν , we have
( t a ) ν | ( F y ) ( t ) ( F y ˜ ) ( t ) | λ C ζ ( t a ) ν ζ Γ ( η ) a t ( t s ) η 1 ( s a ) ν d s · y y ˜ C ν = λ C ζ Γ ( 1 ν ) Γ ( 1 + η ν ) ( t a ) η ζ · y y ˜ C ν .
Similarly, we find
( t a ) ν | ( F 2 y ) ( t ) ( F 2 y ˜ ) ( t ) | λ C ζ ( t a ) ν ζ Γ ( η ) a t ( t s ) η 1 ( s a ) η ζ ν ( s a ) ν | ( F y ) ( s ) ( F y ˜ ) ( s ) | d s λ C ζ 2 i = 0 1 Γ ( i ( η ζ ) + 1 ν ) Γ ( i ( η ζ ) + η + 1 ν ) ( t a ) 2 ( η ζ ) · y y ˜ C ν .
By induction, we deduce that
( t a ) ν | ( F k y ) ( t ) ( F k y ˜ ) ( t ) | i = 0 k 1 Γ ( i ( η ζ ) + 1 ν ) Γ ( i ( η ζ ) + η + 1 ν ) λ C ζ k ( T a ) k ( η ζ ) · y y ˜ C ν .
We write
d k = i = 0 k 1 Γ ( i ( η ζ ) + 1 ν ) Γ ( i ( η ζ ) + η + 1 ν ) , k = 1 , 2 , ;
it follows from ([15], Equation (5.2.13)) that
lim k + k ln k ln ( 1 d k ) = 1 η .
This means that for sufficiently large k, the right side of Equation (10) is smaller than L y y ˜ C ν ( L ( 0 , 1 ) ) ; by the generalized Banach’s fixed point theorem [18], F has a unique fixed point y C ν satisfying Equation (9). Then, the following sequence { y n } is convergent in C ν :
y 0 ( t ) = Φ ( t ) , y n ( t ) = y 0 ( t ) + λ ( t ) ( I a + η y n 1 ) ( t ) , n = 1 , 2 , .
Furthermore, we find
y 1 ( t ) = y 0 ( t ) + λ ( t ) ( I a + η y 0 ) ( t ) , y 2 ( t ) = y 0 ( t ) + k = 1 2 λ ( t ) I a + η k y 0 ( t ) , y n ( t ) = y 0 ( t ) + k = 1 n λ ( t ) I a + η k y 0 ( t ) .
Taking the limit as n + in the last identity, we obtain
y ( t ) = lim n + k = 0 n λ ( t ) I a + η k Φ ( t ) = k = 0 + λ ( t ) I a + η k Φ ( t )
and y ( t ) is the unique solution of Equation (9). □
Next, we consider the initial value problem for the inhomogeneous fractional kinetic equation with a variable coefficient:
( H D a + α , β x ) ( t ) λ ( t ) I a + τ x ( t ) = g ( t ) , t ( a , T ] , ( I a + 1 γ x ) ( a + ) = x 0 ,
where 0 < τ < ν α and λ ( t ) C ζ ( 0 ζ < ν + γ 1 + τ ) .
Theorem 6. 
Let g ( t ) C ν , then, Problem (11) has a unique solution x ( t ) C 1 γ , ν α , β given by
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α k = 0 + λ ( t ) I a + τ + α k λ ( t ) Γ ( γ + τ ) ( t a ) γ + τ 1 x 0 + g ( t ) .
Proof. 
From Theorem 4, x C 1 γ , ν α , β satisfies Problem (11) if, and only if, x ( t ) satisfies
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α λ ( t ) I a + τ x ( t ) + g ( t ) .
Let y ( t ) = H D a + α , β x ( t ) C ν , then, x ( t ) = I a + α y ( t ) + ( t a ) γ 1 Γ ( γ ) x 0 , and, hence, Equation (12) can be transformed into
I a + α y ( t ) = I a + α λ ( t ) I a + τ + α y ( t ) + λ ( t ) Γ ( γ + τ ) ( t a ) γ + τ 1 x 0 + g ( t ) ;
thus,
y ( t ) = λ ( t ) I a + τ + α y ( t ) + λ ( t ) Γ ( γ + τ ) ( t a ) γ + τ 1 x 0 + g ( t ) .
By Lemma 10 ( η = τ + α ), Equation (13) has a unique solution
y ( t ) = k = 0 + λ ( t ) I a + τ + α k λ ( t ) Γ ( γ + τ ) ( t a ) γ + τ 1 x 0 + g ( t ) .
This yields
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α y ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α k = 0 + λ ( t ) I a + τ + α k λ ( t ) Γ ( γ + τ ) ( t a ) γ + τ 1 x 0 + g ( t ) .
When λ ( t ) λ is a constant, we have
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α k = 0 + λ k + 1 I a + τ + α k ( t a ) γ + τ 1 Γ ( γ + τ ) x 0 + I a + α k = 0 + λ k I a + τ + α k g ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + ( t a ) γ 1 k = 0 + ( λ ( t a ) τ + α ) k + 1 Γ [ ( τ + α ) ( k + 1 ) + γ ] x 0 + k = 0 + λ k I a + k ( α + τ ) + α g ( t ) = ( t a ) γ 1 x 0 E τ + α , γ ( λ ( t a ) τ + α ) + a t ( t s ) α 1 E τ + α , α ( λ ( t s ) τ + α ) g ( s ) d s .
Then, we obtain the following conclusion:
Theorem 7. 
Let g ( t ) C ν , then, the fractional kinetic initial value problem
a H D 0 + α , β x ( t ) b I 0 + τ x ( t ) = N 0 g ( t ) , ( I 0 + 1 γ x ) ( 0 + ) = d ,
has a unique solution x ( t ) given by
x ( t ) = d t γ 1 E τ + α , γ ( b a t τ + α ) + N 0 a 0 t ( t s ) α 1 E τ + α , α ( b a ( t s ) τ + α ) g ( s ) d s , a 0 .
This result coincides with ([19], Theorem 10), in which the result is obtained by using the Laplace transform.

4.2. Solutions of a Fractional Integro-Differential Equation with a Generalized Mittag–Leffler Function

Lemma 11. 
For 0 ξ < ω < ν , λ ( t ) C ξ and Ψ ( t ) C ν , the integral equation
y ( t ) = Ψ ( t ) + λ ( t ) ( E ρ , ω , θ ; a + y ) ( t )
has a unique solution y C ν given by
y ( t ) = k = 0 + λ ( t ) E ρ , ω , θ ; a + k Ψ ( t ) .
Proof. 
Since ( E ρ , ω , θ ; a + y ) ( t ) C ν ω and λ ( t ) ( E ρ , ω , θ ; a + y ) ( t ) C ν ω + ξ C ν , we define an operator T : C ν C ν as follows:
( T y ) ( t ) = Ψ ( t ) + λ ( t ) ( E ρ , ω , θ ; a + y ) ( t ) .
It is obvious that a fixed point of T is a solution of Equation (14). For y , y ˜ C ν ; we have
( t a ) ν | ( T y ) ( t ) ( T y ˜ ) ( t ) | ( t a ) ν | λ ( t ) | a t ( t s ) ω 1 E ρ , ω ( θ ( t s ) ρ ) | y ( s ) y ˜ ( s ) | d s λ C ξ ( t a ) ν ξ Γ ( ω ) a t ( t s ) ω 1 ( s a ) ν d s · y y ˜ C ν = λ C ξ Γ ( 1 ν ) Γ ( 1 + ω ν ) ( t a ) ω ξ · y y ˜ C ν .
Furthermore,
( t a ) ν | ( T 2 y ) ( t ) ( T 2 y ˜ ) ( t ) | λ C ξ ( t a ) ν ξ Γ ( ω ) a t ( t s ) ω 1 ( s a ) ω ξ ν ( s a ) ν | ( T y ) ( s ) ( T y ˜ ) ( s ) | d s λ C ξ 2 i = 0 1 Γ ( i ( ω ξ ) + 1 ν ) Γ ( i ( ω ξ ) + ω + 1 ν ) ( t a ) 2 ( ω ξ ) · y y ˜ C ν ,
similar to the proof of Lemma 10, we can deduce that the operator T has a unique fixed point y C ν satisfying Equation (14) and y ( t ) is the limit of the following sequence { y n } :
y 0 ( t ) = Ψ ( t ) , y n ( t ) = y 0 ( t ) + λ ( t ) ( E ρ , ω , θ ; a + y n 1 ) ( t ) , n = 1 , 2 , .
Thus, we obtain
y ( t ) = k = 0 + λ ( t ) E ρ , ω , θ ; a + k Ψ ( t ) .
Theorem 8. 
Let h : ( a , T ] R and h ( t ) C ν , λ ( t ) C ξ , if 0 < ω ˜ < ν α and 0 ξ < ν + γ 1 + ω ˜ , then, the initial value problem
( H D a + α , β x ) ( t ) λ ( t ) a t ( t s ) ω ˜ 1 E ρ , ω ˜ ( θ ( t s ) ρ ) x ( s ) d s = h ( t ) , t ( a , T ] , ( I a + 1 γ x ) ( a + ) = x 0 ,
has a unique solution x C 1 γ , ν α , β given by
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α k = 0 + λ ( t ) E ρ , ω ˜ + α , θ ; a + k x 0 λ ( t ) ( t a ) ω ˜ + γ 1 E ρ , ω ˜ + γ ( θ ( t a ) ρ ) + h ( t ) .
Proof. 
Let f ( t , x ( t ) ) = λ ( t ) ( E ρ , ω ˜ , θ ; a + x ) ( t ) + h ( t ) ; from Theorem 5, x C 1 γ , ν α , β satisfies Problem (15), and only x ( t ) satisfies
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α λ ( t ) ( E ρ , ω ˜ , θ ; a + x ) ( t ) + h ( t ) .
Let z ( t ) = H D a + α , β x ( t ) , then, x ( t ) = I a + α z ( t ) + ( t a ) γ 1 Γ ( γ ) x 0 , and, hence, Equation (16) can be transformed into
z ( t ) = λ ( t ) E ρ , ω ˜ + α , θ ; a + z ( t ) + λ ( t ) E ρ , ω ˜ , θ ; a + ( t a ) γ 1 Γ ( γ ) x 0 + h ( t ) .
From Lemma 2, one has λ ( t ) E ρ , ω ˜ + α , θ ; a + z ( t ) , λ ( t ) E ρ , ω ˜ , θ ; a + ( t a ) γ 1 Γ ( γ ) C ν . By Lemma 11, there exists a unique function z ( t ) C ν such that
z ( t ) = k = 0 + λ ( t ) E ρ , ω ˜ + α , θ ; a + k λ ( t ) E ρ , ω ˜ , θ ; a + ( t a ) γ 1 Γ ( γ ) x 0 + h ( t ) .
By Lemma 7(iii), we find
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α z ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + I a + α k = 0 + λ ( t ) E ρ , ω ˜ + α , θ ; a + k x 0 λ ( t ) ( t a ) ω ˜ + γ 1 E ρ , ω ˜ + γ ( θ ( t a ) ρ ) + h ( t ) .
We complete the proof. □
When λ ( t ) λ , from Lemma 8, we obtain
k = 0 + E ρ , ω ˜ + α , θ ; a + k E ρ , ω ˜ , θ ; a + ( t a ) γ 1 Γ ( γ ) x 0 = k = 0 + E ρ , k ( ω ˜ + α ) + ω ˜ , θ ; a + k + 1 ( t a ) γ 1 Γ ( γ ) x 0 ,
and
I a + α [ k = 0 + E ρ , ω ˜ + α , θ ; a + k E ρ , ω ˜ , θ ; a + ( t a ) γ 1 Γ ( γ ) x 0 ] = I a + α k = 0 + E ρ , k ( ω ˜ + α ) + ω ˜ , θ ; a + k + 1 ( t a ) γ 1 Γ ( γ ) x 0 = k = 0 + ( t a ) ( k + 1 ) ( ω ˜ + α ) + γ 1 E ρ , ( k + 1 ) ( ω ˜ + α ) + γ k + 1 ( θ ( t a ) ρ ) x 0 .
Hence, we have
x ( t ) = ( t a ) γ 1 Γ ( γ ) x 0 + k = 0 + λ k + 1 ( t a ) ( k + 1 ) ( ω ˜ + α ) + γ 1 E ρ , ( k + 1 ) ( ω ˜ + α ) + γ k + 1 ( θ ( t a ) ρ ) x 0 + k = 0 + λ k E ρ , k ( ω ˜ + α ) + α , θ ; a + k h ( t ) = k = 0 + λ k ( t a ) k ( ω ˜ + α ) + γ 1 E ρ , k ( ω ˜ + α ) + γ k ( θ ( t a ) ρ ) x 0 + k = 0 + λ k E ρ , k ( ω ˜ + α ) + α , θ ; a + k h ( t ) .
Now, we obtain the following conclusion.
Theorem 9. 
Let h ( t ) C ν ( 2 α < ν < 1 γ + α ), then, the following initial value problem
H D a + α , β x ( t ) λ a t ( t s ) α 1 E ρ , α ( θ ( t s ) ρ ) x ( s ) d s = h ( t ) , t ( a , T ] , ( I a + 1 γ x ) ( a + ) = x 0 ,
has a unique solution x ( t ) given by
x ( t ) = k = 0 + λ k ( t a ) 2 k α + γ 1 E ρ , 2 k α + γ k ( θ ( t a ) ρ ) x 0 + k = 0 + λ k E ρ , 2 k α + α , θ ; a + k h ( t ) .
This result coincides with Theorem 9, γ = 1 in [19], in which the result is obtained by using the Laplace transform.
Example 1. 
We consider the following initial value problem for the fractional kinetic differential equation:
( H D 0 + 1 10 , 1 3 x ) ( t ) t 1 20 I 0 + 1 5 x ( t ) = t 1 2 , t ( 0 , 1 ] , ( I 0 + 3 5 x ) ( 0 + ) = 1 .
We set α = 1 10 , β = 1 3 , γ = 2 5 , λ ( t ) = t 1 20 , τ = 1 5 and g ( t ) = t 1 2 . From Theorem 6, Problem (17) has a unique solution x ( t ) C 3 5 , 1 2 1 10 , 1 3 and
x ( t ) = t 3 5 Γ ( 2 5 ) + I 0 + 1 10 k = 0 + t 1 20 I 0 + 3 10 k t 9 20 Γ ( 3 5 ) + t 1 2 .
Note that from the fact
( t a I 0 + υ ) k t b = i = 0 k 1 Γ [ i ( υ a ) + b + 1 ] Γ [ i ( υ a ) + b + υ + 1 ] t k ( υ a ) + b , k = 1 , 2 , , b > 1 , 1 a υ > 0 , t b + k = 1 + i = 0 k 1 Γ [ i ( υ a ) + b + 1 ] Γ [ i ( υ a ) + b + υ + 1 ] t k ( υ a ) + b = t b E υ , 1 a υ , b υ ( t υ a ) ,
we obtain
k = 0 + t 1 20 I 0 + 3 10 k t 9 20 Γ ( 3 5 ) = t 9 20 Γ ( 3 5 ) 1 + k = 1 + i = 0 k 1 Γ ( i 4 + 11 20 ) Γ ( i 4 + 17 20 ) t k 4 = t 9 20 Γ ( 3 5 ) E 3 10 , 5 6 , 3 2 ( t 1 4 ) , k = 0 + t 1 20 I 0 + 3 10 k t 1 2 = t 1 2 1 + k = 1 + i = 0 k 1 Γ ( i 4 + 1 2 ) Γ ( i 4 + 4 5 ) t k 4 = t 1 2 E 3 10 , 5 6 , 5 3 ( t 1 4 ) .
Combining with Equation (18), the explicit solution for Problem (17) can be represented by
x ( t ) = t 3 5 Γ ( 2 5 ) + I 0 + 1 10 t 9 20 Γ ( 3 5 ) E 3 10 , 5 6 , 3 2 ( t 1 4 ) + t 1 2 E 3 10 , 5 6 , 5 3 ( t 1 4 ) .

5. Conclusions

In this paper, we obtain the existence and uniqueness of solutions for two kinds of fractional integro-differential equations with a variable coefficient λ ( t ) in the weighted space C 1 γ , ν α , β , where λ ( t ) belongs to a weighted space. For example, λ ( t ) can be taken as a negative power function t μ , where μ is an appropriate positive number in ( 0 , 1 ) . Therefore, the technique used in this paper can be applied to solve the more general equations.

Author Contributions

Conceptualization, F.L. and H.W.; methodology, F.L.; software, S.Z.; validation, S.Z., F.L. and H.W.; formal analysis, F.L.; investigation, S.Z.; resources, H.W.; writing—original draft preparation, F.L.; writing—review and editing, S.Z. and H.W.; supervision, F.L.; project administration, F.L. and H.W.; funding acquisition, F.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Natural Science Foundation of China grant number 11971329.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors thank the anonymous referees, whose valuable comments have helped improve the original manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Miller, K.S.; Ross, B. An Introduction to the fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
  2. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Swizerland, 1993. [Google Scholar]
  3. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  4. Ma, W.X. Novel Liouville integrable Hamiltonian models with six components and three signs. Chin. J. Phys. 2023, 86, 292–299. [Google Scholar] [CrossRef]
  5. Ma, W.X. A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure. Rom. Rep. Phys. 2023, 75, 115. [Google Scholar]
  6. Ma, W.X. Four-component integrable hierarchies of Hamiltonian equations with (m + n + 2)th-order Lax pairs. Theor. Math. Phys. 2023, 216, 1180–1188. [Google Scholar] [CrossRef]
  7. Baskonus, H.M.; Sánchez Ruiz, L.M.; Ciancio, A. New challenges arising in engineering problems with fractional and integer order. Fractal Fract. 2021, 5, 35. [Google Scholar] [CrossRef]
  8. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  9. Oliveira, D.S.; Capelas de Oliveira, E. Hilfer-Katugampola fractional derivative. Comput. Appl. Math. 2018, 37, 3672–3690. [Google Scholar] [CrossRef]
  10. Kilbas, A.A.; Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J. α-analytic solutions of some linear fractional differential equations with variable coefficients. Appl. Math. Comput. 2007, 187, 239–249. [Google Scholar] [CrossRef]
  11. Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J. Linear fractional differential equations with variable coefficients. Appl. Math. Lett. 2008, 21, 892–897. [Google Scholar] [CrossRef]
  12. Atanackovic, T.; Stankovic, B. Linear fractional differential equation with variable coefficients I. Bull. Cl. Sci. Math. Nat. Sci. Math. 2013, 38, 27–42. [Google Scholar]
  13. Atanackovic, T.; Stankovic, B. Linear fractional differential equation with variable coefficients II. Bull. Cl. Sci. Math. Nat. Sci. Math. 2014, 39, 53–78. [Google Scholar]
  14. Restrepo, J.E.; Suragan, D. Hilfer-type fractional differential equations with variable coefficients. Chaos Solitons Fractals 2021, 150, 111146. [Google Scholar] [CrossRef]
  15. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2020. [Google Scholar]
  16. Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
  17. Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
  18. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
  19. Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhu, S.; Wang, H.; Li, F. Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient. Fractal Fract. 2024, 8, 63. https://doi.org/10.3390/fractalfract8010063

AMA Style

Zhu S, Wang H, Li F. Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient. Fractal and Fractional. 2024; 8(1):63. https://doi.org/10.3390/fractalfract8010063

Chicago/Turabian Style

Zhu, Sigang, Huiwen Wang, and Fang Li. 2024. "Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient" Fractal and Fractional 8, no. 1: 63. https://doi.org/10.3390/fractalfract8010063

APA Style

Zhu, S., Wang, H., & Li, F. (2024). Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient. Fractal and Fractional, 8(1), 63. https://doi.org/10.3390/fractalfract8010063

Article Metrics

Back to TopTop