Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional Integral and Derivatives
- (i)
- We denote by the space of continuous functions x on with the norm .
- (ii)
- We denote the weighted space
- (iii)
- We denote the weighted space
- (iv)
- We denote the weighted space
- (v)
- We denote the weighted space
2.2. Generalized Mittag–Leffler Functions
- (i)
- for , and ;
- (ii)
- for , ;
- (iii)
- for ,
- (i)
- is a bounded operator from into ;
- (ii)
- if and , then, .
3. Equivalent Integral Equation
4. Exact Solutions of Two Kinds of Fractional Integro-Differential Equations
4.1. Solutions of a Fractional Kinetic Equation
4.2. Solutions of a Fractional Integro-Differential Equation with a Generalized Mittag–Leffler Function
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Swizerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ma, W.X. Novel Liouville integrable Hamiltonian models with six components and three signs. Chin. J. Phys. 2023, 86, 292–299. [Google Scholar] [CrossRef]
- Ma, W.X. A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure. Rom. Rep. Phys. 2023, 75, 115. [Google Scholar]
- Ma, W.X. Four-component integrable hierarchies of Hamiltonian equations with (m + n + 2)th-order Lax pairs. Theor. Math. Phys. 2023, 216, 1180–1188. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Sánchez Ruiz, L.M.; Ciancio, A. New challenges arising in engineering problems with fractional and integer order. Fractal Fract. 2021, 5, 35. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Oliveira, D.S.; Capelas de Oliveira, E. Hilfer-Katugampola fractional derivative. Comput. Appl. Math. 2018, 37, 3672–3690. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J. α-analytic solutions of some linear fractional differential equations with variable coefficients. Appl. Math. Comput. 2007, 187, 239–249. [Google Scholar] [CrossRef]
- Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J. Linear fractional differential equations with variable coefficients. Appl. Math. Lett. 2008, 21, 892–897. [Google Scholar] [CrossRef]
- Atanackovic, T.; Stankovic, B. Linear fractional differential equation with variable coefficients I. Bull. Cl. Sci. Math. Nat. Sci. Math. 2013, 38, 27–42. [Google Scholar]
- Atanackovic, T.; Stankovic, B. Linear fractional differential equation with variable coefficients II. Bull. Cl. Sci. Math. Nat. Sci. Math. 2014, 39, 53–78. [Google Scholar]
- Restrepo, J.E.; Suragan, D. Hilfer-type fractional differential equations with variable coefficients. Chaos Solitons Fractals 2021, 150, 111146. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2020. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Wang, H.; Li, F. Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient. Fractal Fract. 2024, 8, 63. https://doi.org/10.3390/fractalfract8010063
Zhu S, Wang H, Li F. Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient. Fractal and Fractional. 2024; 8(1):63. https://doi.org/10.3390/fractalfract8010063
Chicago/Turabian StyleZhu, Sigang, Huiwen Wang, and Fang Li. 2024. "Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient" Fractal and Fractional 8, no. 1: 63. https://doi.org/10.3390/fractalfract8010063
APA StyleZhu, S., Wang, H., & Li, F. (2024). Solutions for Hilfer-Type Linear Fractional Integro-Differential Equations with a Variable Coefficient. Fractal and Fractional, 8(1), 63. https://doi.org/10.3390/fractalfract8010063