Stability in the Sense of Hyers–Ulam–Rassias for the Impulsive Volterra Equation
Abstract
:1. Introduction
- Study the stability in the sense of U–H and U–HR for some impulsive VIEs.
- Obtain new results by dropping essential conditions in some recent interesting publications.
- Employ a known FPT as the main instrument in our analysis.
2. Preliminaries
- G1
- if and only if ;
- G2
- for all ;
- G3
- for all ;
- (a)
- The sequence converges to an FP of θ;
- (b)
- is the unique FP of θ in ;
- (c)
- If , then .
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hyers, D.H.; Isac, G.; Rassias, T.H.M. Stability of Functional Equation in Several Variables; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 34. [Google Scholar]
- Rassias, T.M. On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 2000, 251, 264–284. [Google Scholar] [CrossRef]
- Brillouȩt-Belluot, N.; Brzdxexk, J.; Ciepliński, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. Hindawi 2012, 2012, 716936. [Google Scholar] [CrossRef]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Obloza, M. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
- Obloza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 1997, 14, 141–146. [Google Scholar]
- Brzdęk, J. Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hungar. 2013, 141, 58–67. [Google Scholar] [CrossRef]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Rassias, J.M. On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 1982, 46, 126–130. [Google Scholar] [CrossRef]
- Rassias, J.M. On a new approximation of approximately linear mappings by linear mappings. Discuss. Math. 1985, 7, 193–196. [Google Scholar]
- Brzdęk, J. A hyperstability result for the Cauchy equation. Bull. Austral. Math. Soc. 2014, 89, 33–40. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators, Mathematical Analysis and Its Applications v. 1; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Xu, B.; Brzdęk, J.; Zhang, W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pac. J. Math. 2015, 273, 483–498. [Google Scholar] [CrossRef]
- Gähler, S. 2-metrisch Räume und ihre topologische Struktur. Math. Nachr. 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Gähler, S. Lineare 2-normierte Räumen. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
- Misiak, A. n-inner product spaces. Math. Nachr. 1989, 140, 299–319. [Google Scholar] [CrossRef]
- El-hady, E.S.; Brzdęk, J. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365. [Google Scholar] [CrossRef]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.A. The stability of certain functional equations. Proc. Am. Math. Soc. 1991, 112, 729–732. [Google Scholar] [CrossRef]
- Brzdȩk, J.; El-hady, E.S.; Leśniak, Z. Fixed-point theorem in classes of function with values in a dq-metric space. J. Fixed Point Theory Appl. 2018, 20, 143. [Google Scholar] [CrossRef]
- Székelyhidi, L. Note on a stability theorem. Can. Math. Bull. 1982, 25, 500–501. [Google Scholar] [CrossRef]
- Pales, Z. Generalized stability of the Cauchy functional equation. Aequationes Math. 1998, 56, 222–232. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Nain, A.K.; Vats, R.K.; Das, P. A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam–Hyers stability. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Ser. A Matemáticas 2023, 117, 160. [Google Scholar]
- Makhlouf, A.B.; El-Hady, E.S.; Arfaoui, H.; Boulaaras, S.; Mchiri, L. Stability of some generalized fractional differential equations in the sense of Ulam-Hyers-Rassias. Bound. Value Probl. 2023, 2023, 8. [Google Scholar] [CrossRef] [PubMed]
- Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Geetha, P.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E.S. On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions. Symmetry 2022, 15, 5. [Google Scholar] [CrossRef]
- Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E.S. Sequential Caputo-Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces. Fractal Fract. 2022, 6, 730. [Google Scholar] [CrossRef]
- Ben Makhlouf, A.; El-hady, E.S.; Boulaaras, S.; Mchiri, L. Stability results of some fractional neutral integrodifferential equations with delay. J. Funct. Spaces 2022, 2022, 8211420. [Google Scholar] [CrossRef]
- HamaRashid, H.; Srivastava, H.M.; Hama, M.; Mohammed, P.O.; Al-Sarairah, E.; Almusawa, M.Y. New Numerical Results on Existence of Volterra–Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type. Symmetry 2023, 15, 1144. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y. Study on the Multi-Point Boundary Value Problem for Second-Order Nonlinear Impulsive Integro-Differential Equation. J. Math. 2023, 2023, 3120723. [Google Scholar] [CrossRef]
- Jung, S.M. A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, 2007, 057064. [Google Scholar] [CrossRef]
- Akkouchi, M. Hyers-Ulam-Rassias stability of nonlinear volterra integral equations via a fixed point approach. Acta Univ. Apulensis 2011, 26, 257–266. [Google Scholar]
- Zada, A.; Riaz, U.; Khan, F.U. Hyers-Ulam stability of impulsive integral equations. Boll. Dell’Unione Mat. Ital. 2019, 12, 453–467. [Google Scholar] [CrossRef]
- Zada, A.; Shah, S.O.; Li, Y. Hyers–Ulam stability of nonlinear impulsive Volterra integro–delay dynamic system on time scales. Nonlinear Sci. Appl. 2017, 10, 5701–5711. [Google Scholar] [CrossRef]
- Shah, S.O.; Zada, A. Hyers-Ulam stability of non-linear Volterra integro-delay dynamic system with fractional integrable impulses on time scales. Iran. J. Math. Sci. Inform. 2022, 17, 85–97. [Google Scholar] [CrossRef]
- Kalkan, Z.; Şahin, A. Some new stability results of Volterra integral equations on time scales. Maltepe J. Math. 2022, 4, 44–54. [Google Scholar] [CrossRef]
- Lin, Z.; Wei, W.; Wang, J. Existence and Stability Results for Impulsive Integro-Differential Equations. Facta Univ. Ser. Math. Inform. 2015, 29, 119–130. [Google Scholar]
- Wang, J.; Zhang, Y. A Class of Nonlinear Differential Equations with Fractional Integrable Impulses. Com. Nonl. Sci. Num. Sim. 2014, 19, 3001–3010. [Google Scholar] [CrossRef]
- Zada, A.; Ali, W.; Farina, S. Hyers Ulam Stability of Nonlinear Differential Equations with Fractional Integrable Impulses. Math. Methods Appl. Sci. 2017, 40, 5502–5514. [Google Scholar] [CrossRef]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Ciepliński, K. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations—A survey. Ann. Funct. Anal. 2012, 3, 151–164. [Google Scholar] [CrossRef]
- Brzdęk, J.; Chudziak, J.; Páles, Z. A fixed point approach to stability of functional equations, Nonlinear Analysis. Theory Methods Appl. A 2011, 74, 6728–6732. [Google Scholar] [CrossRef]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Cǎdariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003, 4, 4. [Google Scholar]
- Gajda, Z. On stability of additive mappings. Internat. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Shah, R.; Zada, A. Hyers-Ulam-Rassias stability of impulsive Volterra integral equation via a fixed point approach. J. Linear Topol. Algebra 2019, 8, 219–227. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-hady, E.-s.; Öğrekçi, S.; Lazăr, T.A.; Lazăr, V.L. Stability in the Sense of Hyers–Ulam–Rassias for the Impulsive Volterra Equation. Fractal Fract. 2024, 8, 47. https://doi.org/10.3390/fractalfract8010047
El-hady E-s, Öğrekçi S, Lazăr TA, Lazăr VL. Stability in the Sense of Hyers–Ulam–Rassias for the Impulsive Volterra Equation. Fractal and Fractional. 2024; 8(1):47. https://doi.org/10.3390/fractalfract8010047
Chicago/Turabian StyleEl-hady, El-sayed, Süleyman Öğrekçi, Tania A. Lazăr, and Vasile L. Lazăr. 2024. "Stability in the Sense of Hyers–Ulam–Rassias for the Impulsive Volterra Equation" Fractal and Fractional 8, no. 1: 47. https://doi.org/10.3390/fractalfract8010047
APA StyleEl-hady, E.-s., Öğrekçi, S., Lazăr, T. A., & Lazăr, V. L. (2024). Stability in the Sense of Hyers–Ulam–Rassias for the Impulsive Volterra Equation. Fractal and Fractional, 8(1), 47. https://doi.org/10.3390/fractalfract8010047