The Effects of Nonlinear Noise on the Fractional Schrödinger Equation
Abstract
:1. Introduction
- (1)
- is the smallest positive integer greater than or equal to .
- (2)
- Throughout this paper, we call is an admissible pair if it satisfiesIn addition, for , we setThe inequality holds true for all admissible pairs except for the case of .
- (3)
- Let be a function of class such thatFurthermore, there exists and . For any admissible pair , there exists a probability space
2. Preliminaries
- (1)
- Given and , the non-homogeneous Sobolev space is defined byAnd the definition of the homogeneous Sobolev space is given by
- (2)
- For , the space of random function in is denoted by such that
- (3)
- We review the definition of space , which is a space of Hilbert–Schmidt operator from into . The norm of operator in is defined as
3. Local Well-Posedness
3.1. Estimations
3.2. Proof of Theorem 1
4. The Existence of a Global Solution
4.1. The Stochastic Identity of and
4.2. Proof of Theorem 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, Y.; Ozawa, T.; Xia, S. Remarks on some dispersive estimates. Commun. Pure Appl. Anal. 2011, 10, 1121–1128. [Google Scholar] [CrossRef]
- Erdlyi, A. Transformation of hypergeometric integrals by means of fractional integration by parts. Q. J. Math. 1939, 10, 176–189. [Google Scholar] [CrossRef]
- Hilfer, R. Fractional Calculus and Regular Variation in Thermodynamics; World Scientific Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Hajaiej, H.; Hwang, G.; Ozawa, T. On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity. Funkcial. Ekvac. 2013, 56, 193–224. [Google Scholar] [CrossRef]
- Cho, Y.; Hwang, G.; Kwon, S.; Lee, S.H. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discret. Contin. Dyn. Syst. 2015, 35, 2863–2880. [Google Scholar] [CrossRef]
- Cazenave, T. Similinear Schrödinger Equations; American Mathematical Society: New York, NY, USA, 2003. [Google Scholar]
- Dinh, V.D. Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces. Int. J. Appl. Math. 2018, 31, 483–525. [Google Scholar] [CrossRef]
- Guo, B.; Wang, B. The global Cauchy problem and scattering of solutions for nonlinear Schrödinger equations in Hs. Differ. Integral Equ. 2002, 15, 1073–1083. [Google Scholar]
- Guo, B.; Huo, Z. Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 2013, 16, 226–242. [Google Scholar] [CrossRef]
- Hong, Y.; Sire, Y. On fractional Schrödinger equations in Sobolev spaces. Commun. Pure Appl. Anal. 2015, 14, 2265–2282. [Google Scholar] [CrossRef]
- Ionescu, A.D.; Pusateri, F. Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 2014, 266, 139–176. [Google Scholar] [CrossRef]
- de Bouard, A.; Debussche, A. A stochastic nonlinear Schrödinger equation with multiplicative noise. Comm. Math. Phys. 1999, 205, 161–168. [Google Scholar] [CrossRef]
- de Bouard, A.; Debussche, A. The stochastic nonlinear Schrödinger equation in H1. Stoch. Anal. Appl. 2003, 21, 97–126. [Google Scholar] [CrossRef]
- Barbu, V.; Röckner, M.; Zhang, D. Stochastic nonlinear Schrödinger equations with linear multiplicative noise: Rescaling approach. J. Nonlinear Sci. 2014, 3, 383–409. [Google Scholar] [CrossRef]
- Barbu, V.; Röckner, M.; Zhang, D. Stochastic nonlinear Schrödinger equations. Nonlinear Anal. 2016, 136, 168–194. [Google Scholar] [CrossRef]
- Ondreját, M. Stochastic wave equation with critical nonlinearities: Temporal regularity and uniqueness. J. Differ. Equ. 2010, 248, 1579–1602. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Millet, A. On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold. Potential Anal. 2014, 41, 269–315. [Google Scholar] [CrossRef]
- Hornung, F. The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates. J. Evol. Equ. 2018, 18, 1085–1114. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G. Martingale solutions of stochastic fractional nonlinear Schrödinger equation on a bounded interval. Appl. Anal. 2017, 96, 2553–2574. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Peszat, S. Space-time continuous solutions to SPDEs driven by a homogeneous Wiener process. Studia Math. 1999, 137, 261–299. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Ferrario, B.; Zanella, M. Ergodic results for the stochastic nonlinear Schrödinger equation with large damping. J. Evol. Equ. 2023, 23, 19. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Applications, 2nd ed.; Horwood Publishing Limited: Chichester, UK, 2008. [Google Scholar]
- Oh, T.; Okamoto, M. On the stochastic nonlinear Schrödinger equations at critical regularities. Stoch. Partial Differ. Equ. Anal. Comput. 2020, 8, 869–894. [Google Scholar] [CrossRef]
- Peng, X.; Yang, J.; Zhai, J. Well-posedness of stochastic 2D hydrodynamics type systems with multiplicative Lévy noises. Electron. J. Probab. 2022, 27, 1–31. [Google Scholar] [CrossRef]
- Rasmussen, K.; Gaididei, Y.B.; Bang, O.; Chrisiansen, P.L. The influence of noise on critical collapse in the nonlinear Schrödinger equation. Phys. Lett. A 1995, 204, 121–127. [Google Scholar] [CrossRef]
- Wu, S.; Yan, W.; Hou, C.; Huang, J. Global well-posedness and asymptotic behavior of stochastic mKdV equation with fractional dissipation. Z. Angew. Math. Phys. 2023, 74, 82. [Google Scholar] [CrossRef]
- Zhang, D. Strichartz and local smoothing estimates for stochastic dispersive equations with linear multiplicative noise. SIAM J. Math. Anal. 2022, 54, 5981–6017. [Google Scholar] [CrossRef]
- Brzeźniak, Z. On stochastic convolution in Banach spaces and applications. Stoch. Stoch. Rep. 1997, 61, 245–295. [Google Scholar] [CrossRef]
- Kassymov, A.A.; Ruzhansky, M.V.; Tokmagambetov, N.; Torebek, B.T. Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives. Banach J. Math. Anal. 2021, 15, 6–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Yang, H.; Li, D.; Ming, S. The Effects of Nonlinear Noise on the Fractional Schrödinger Equation. Fractal Fract. 2024, 8, 19. https://doi.org/10.3390/fractalfract8010019
Xie J, Yang H, Li D, Ming S. The Effects of Nonlinear Noise on the Fractional Schrödinger Equation. Fractal and Fractional. 2024; 8(1):19. https://doi.org/10.3390/fractalfract8010019
Chicago/Turabian StyleXie, Jin, Han Yang, Dingshi Li, and Sen Ming. 2024. "The Effects of Nonlinear Noise on the Fractional Schrödinger Equation" Fractal and Fractional 8, no. 1: 19. https://doi.org/10.3390/fractalfract8010019
APA StyleXie, J., Yang, H., Li, D., & Ming, S. (2024). The Effects of Nonlinear Noise on the Fractional Schrödinger Equation. Fractal and Fractional, 8(1), 19. https://doi.org/10.3390/fractalfract8010019