On Pantograph Problems Involving Weighted Caputo Fractional Operators with Respect to Another Function
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- Our current problems cover a wide range of problems which uses less general derivatives operators by make use of different values of ψ and .
2. Primitive Results
3. Main Results
3.1. Basic Result
- (P)
- (P)
3.2. Existence Results
4. Weighted -Caputo Fractional System
- (P)
- for withThen the ψ-weighted pantograph system (21) has a unique solution.
- (P)
- forThen the ψ-weighted pantograph system (21) has a least one solution.
5. Examples
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osler, J. Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North–Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef] [Green Version]
- Abdo, M.S. Boundary value problem for fractional neutral differential equations with infinite delay. Abhath J. Basic Appl. Sci. 2022, 1, 1–18. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 16–20. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations; Springer Science & Bussines Media: Berlin/Heidelberg, Germany, 2012; Volume 27. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Existence results for a coupled system of Caputo-type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 2015, 266, 615–622. [Google Scholar] [CrossRef]
- Ntouyas, S.K. Global existence results for certain second order delay integrodifferential equations with nonlocal conditions. Dyn. Syst. Appl. 1998, 7, 415–426. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
- Abdo, M.S. Existence and stability analysis to nonlocal implicit problems with ψ-piecewise fractional operators. Abhath J. Basic Appl. Sci. 2022, 1, 11–17. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. CommuN. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.C.; Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commu. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. New definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivative with non-local and non-singular kernel. Therm. Sci. 2016, 20, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Thabet, S.; Abdo, M.S.; Shah, K. Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative. Adv. Differ. Equ. 2021, 2021, 184. [Google Scholar] [CrossRef]
- Abdo, M.S.; Panchal, S.K.; Shah, K.; Abdeljawad, T. Existence theory and numerical analysis of three species prey-predator model under Mittag-Leffler power law. Adv. Differ. Equ. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Atangana, A.; Gómez-Aguilar, J.F. Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos Solitons Fractals 2018, 114, 516–535. [Google Scholar] [CrossRef]
- Ghanbari, B.; Kumar, S.; Kumar, R. A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 2020, 133, 109619. [Google Scholar] [CrossRef]
- Hale, J.K.; Lunel, S.M. Introduction to Functional Differential Equations; Springer Science and Bussines Media: New York, NY, USA, 2013. [Google Scholar]
- Brunt, B.; Zaidi, A.A.; Lynch, T. Cell division and the pantograph equation. ESAIM Proc. Surv. 2018, 62, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, S.; Ordokhani, Y.; Dehghan, M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4815–4830. [Google Scholar] [CrossRef]
- Bahsi, M.; Cevik, M.; Sezer, M. Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation. Appl. Math. Comput. 2015, 271, 11–21. [Google Scholar]
- Ockendon, J.R.; Taylor, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. Ser. A 1971, 322, 447–468. [Google Scholar]
- Ajello, W.G.; Freedman, H.I.; Wu, J. A model of stage structured population growth with density depended time delay. SIAM J. Appl. Math. 1992, 52, 855–869. [Google Scholar]
- Weiner, G.J. Activation of NK Cell Responses and Immunotherapy of Cancer. Current Cancer Res. 2014, 12, 57–66. [Google Scholar]
- Langley, J.K. A certain functional-differential equation. J. Math. Anal. Appl. 2000, 244, 564–567. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Z. Asymptotic behavior of functional-differential equations with proportional time delays. Eur. J. Appl. Math. 1996, 7, 11–30. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.Z. Runge-Kutta methods for the multi-pantograph delay equation. Appl. Math. Comput. 2005, 163, 383–395. [Google Scholar] [CrossRef]
- Derfel, G.A.; Iserles, A. The pantograph equation in the complex plane. J. Math. Anal. Appl. 1997, 213, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A. Exact and discretized stability of the pantograph equation. Appl. Numer. Math. 1997, 24, 295–308. [Google Scholar] [CrossRef]
- Liu, M.Z.; Li, D. Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math. Comput. 2004, 155, 853–871. [Google Scholar] [CrossRef]
- Sezer, M.; Yalcinbas, S.; Sahin, N. Approximate solution of multi-pantograph equation with variable coefficients. J. Comput. Appl. Math. 2008, 214, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, K.; Kiruthika, S.; Trujillo, J. Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 2013, 33, 712–720. [Google Scholar] [CrossRef]
- Agarwal, O. Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 2012, 15, 700–711. [Google Scholar] [CrossRef]
- Kolokoltsov, V.N. The probabilistic point of view on the generalized fractional partial differential equations. Fract. Calc. Appl. Anal. 2019, 22, 543–600. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
- Abdo, M.S.; Abdeljawad, T.; Ali, S.M.; Shah, K.; Jarad, F. Existence of positive solutions for weighted fractional order differential equations. Chaos Solitons Fractals 2020, 141, 110341. [Google Scholar] [CrossRef]
- Abdo, M.S.; Shammakh, W.; Alzumi, H.Z.; Alghamd, N.; Albalwi, M.D. Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function. Fractal Fract. 2023, 7, 2023. [Google Scholar] [CrossRef]
- Al-Refai, M.; Jarrah, A.M. Fundamental results on weighted Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2019, 126, 7–11. [Google Scholar] [CrossRef]
- Al-Refai, M. On weighted Atangana-Baleanu fractional operators. Adv. Differ. Equ. 2020, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G.; Yang, X.J.; Feng, Y.Y.; Geng, L.L. Fundamental results to the weighted Caputo-type differential operator. Appl. Math. Lett. 2021, 121, 107421. [Google Scholar] [CrossRef]
- Fernandez, A.; Fahad, H.M. Weighted fractional calculus: A general class of operators. Fractal Fract. 2022, 6, 208. [Google Scholar] [CrossRef]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Usp. Mat. Nauk. 1955, 10, 123–127. [Google Scholar]
- Zhou, Y. Basic theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.M. On Pantograph Problems Involving Weighted Caputo Fractional Operators with Respect to Another Function. Fractal Fract. 2023, 7, 559. https://doi.org/10.3390/fractalfract7070559
Ali SM. On Pantograph Problems Involving Weighted Caputo Fractional Operators with Respect to Another Function. Fractal and Fractional. 2023; 7(7):559. https://doi.org/10.3390/fractalfract7070559
Chicago/Turabian StyleAli, Saeed M. 2023. "On Pantograph Problems Involving Weighted Caputo Fractional Operators with Respect to Another Function" Fractal and Fractional 7, no. 7: 559. https://doi.org/10.3390/fractalfract7070559
APA StyleAli, S. M. (2023). On Pantograph Problems Involving Weighted Caputo Fractional Operators with Respect to Another Function. Fractal and Fractional, 7(7), 559. https://doi.org/10.3390/fractalfract7070559