Numerical Simulation of a Space-Fractional Molecular Beam Epitaxy Model without Slope Selection
Abstract
1. Introduction
2. Numerical Method
3. Numerical Experiments
3.1. Accuracy, Efficiency, and Energy Stability Tests
3.2. Coarsening Dynamics
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herman, M.A.; Sitter, H. Molecular Beam Epitaxy: Fundamentals and Current Status; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Johnson, M.D.; Orme, C.; Hunt, A.W.; Graff, D.; Sudijono, J.; Sander, L.M.; Orr, B.G. Stable and unstable growth in molecular beam epitaxy. Phys. Rev. Lett. 1994, 72, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, G.; Hudda, F.G. Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 1966, 44, 1039–1049. [Google Scholar] [CrossRef]
- Schwoebel, R.L.; Shipsey, E.J. Step motion on crystal surfaces. J. Appl. Phys. 1966, 37, 3682–3686. [Google Scholar] [CrossRef]
- Schwoebel, R.L. Step motion on crystal surfaces. II. J. Appl. Phys. 1969, 40, 614–618. [Google Scholar] [CrossRef]
- Golubović, L. Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 1997, 78, 90–93. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.-G. Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 2003, 14, 713–743. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.-G. Epitaxial growth without slope selection: Energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 2004, 14, 429–451. [Google Scholar] [CrossRef]
- Chen, W.; Conde, S.; Wang, C.; Wang, X.; Wise, S.M. A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 2012, 52, 546–562. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Wang, Q. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 2017, 333, 104–127. [Google Scholar] [CrossRef]
- Li, W.; Chen, W.; Wang, C.; Yan, Y.; He, R. A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 2018, 76, 1905–1937. [Google Scholar] [CrossRef]
- Ju, L.; Li, X.; Qiao, Z.; Zhang, H. Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 2018, 87, 1859–1885. [Google Scholar] [CrossRef]
- Cheng, Q.; Shen, J.; Yang, X. Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 2019, 78, 1467–1487. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.G. A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. Appl. Numer. Math. 2021, 163, 30–42. [Google Scholar] [CrossRef]
- Kang, Y.; Liao, H.-L.; Wang, J. An energy stable linear BDF2 scheme with variable time-steps for the molecular beam epitaxial model without slope selection. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107047. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 2020, 404, 109009. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 2004, 166, 209–219. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–77. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56, 80–90. [Google Scholar] [CrossRef]
- Ervin, V.J.; Roop, J.P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. Diff. Equ. 2006, 22, 558–576. [Google Scholar] [CrossRef]
- Burrage, K.; Hale, N.; Kay, D. An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 2012, 34, A2145–A2172. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Wang, H. Finite element simulation and efficient algorithm for fractional Cahn–Hilliard equation. J. Comput. Appl. Math. 2019, 356, 248–266. [Google Scholar] [CrossRef]
- Zhang, X.; Crawford, J.W.; Deeks, L.K.; Stutter, M.I.; Bengough, A.G.; Young, I.M. A mass balance based numerical method for the fractional advection-dispersion equation: Theory and application. Water Resour. Res. 2005, 41, W07029. [Google Scholar] [CrossRef]
- Yang, Q.; Moroney, T.; Burrage, K.; Turner, I.; Liu, F. Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions. ANZIAM J. 2011, 52, C395–C409. [Google Scholar] [CrossRef]
- Hejazi, H.; Moroney, T.; Liu, F. Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J. Comput. Appl. Math. 2014, 255, 684–697. [Google Scholar] [CrossRef]
- Weng, Z.; Zhai, S.; Feng, X. A Fourier spectral method for fractional-in-space Cahn–Hilliard equation. Appl. Math. Model. 2017, 42, 462–477. [Google Scholar] [CrossRef]
- Bu, L.; Mei, L.; Hou, Y. Stable second-order schemes for the space-fractional Cahn–Hilliard and Allen–Cahn equations. Comput. Math. Appl. 2019, 78, 3485–3500. [Google Scholar] [CrossRef]
- Alzahrani, S.M.; Chokri, C. Preconditioned pseudo-spectral gradient flow for computing the steady-state of space fractional Cahn–Allen equations with variable coefficients. Front. Phys. 2022, 10, 844294. [Google Scholar] [CrossRef]
- Lee, H.G. A new L2-gradient flow based fractional-in-space modified phase-field crystal equation and its mass conservative and energy stable method. Fractal Fract. 2022, 6, 472. [Google Scholar] [CrossRef]
- Li, X.; Han, C.; Wang, Y. Novel patterns in fractional-in-space nonlinear coupled FitzHugh–Nagumo models with Riesz fractional derivative. Fractal Fract. 2022, 6, 136. [Google Scholar] [CrossRef]
- Tang, T.; Yu, H.; Zhou, T. On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J. Sci. Comput. 2019, 41, A3757–A3778. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, L.; Wang, H. On power law scaling dynamics for time-fractional phase field models during coarsening. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 257–270. [Google Scholar] [CrossRef]
- Ji, B.; Liao, H.-L.; Gong, Y.; Zhang, L. Adaptive second-order Crank–Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models. SIAM J. Sci. Comput. 2020, 42, B738–B760. [Google Scholar] [CrossRef]
- Hou, D.; Xu, C. Robust and stable schemes for time fractional molecular beam epitaxial growth model using SAV approach. J. Comput. Phys. 2021, 445, 110628. [Google Scholar] [CrossRef]
- Zhu, X.; Liao, H.-L. Asymptotically compatible energy law of the Crank–Nicolson type schemes for time-fractional MBE models. Appl. Math. Lett. 2022, 134, 108337. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Ji, B. Two energy stable variable-step L1 schemes for the time-fractional MBE model without slope selection. J. Comput. Appl. Math. 2023, 419, 114702. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.G. Unconditionally energy stable second-order numerical scheme for the Allen–Cahn equation with a high-order polynomial free energy. Adv. Differ. Equ. 2021, 2021, 416. [Google Scholar] [CrossRef]
- Lee, H.G. A non-iterative and unconditionally energy stable method the Swift–Hohenberg equation with quadratic–cubic nonlinearity. Appl. Math. Lett. 2022, 123, 107579. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, J.; Lee, J.-Y. A high-order and unconditionally energy stable scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier. J. Sci. Comput. 2022, 90, 51. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, J.; Lee, J.-Y. Energy quadratization Runge–Kutta scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier. Appl. Math. Lett. 2022, 132, 108161. [Google Scholar] [CrossRef]
- Lee, H.G. Stability condition of the second-order SSP-IMEX-RK method for the Cahn–Hilliard equation. Mathematics 2020, 8, 11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.G. Numerical Simulation of a Space-Fractional Molecular Beam Epitaxy Model without Slope Selection. Fractal Fract. 2023, 7, 558. https://doi.org/10.3390/fractalfract7070558
Lee HG. Numerical Simulation of a Space-Fractional Molecular Beam Epitaxy Model without Slope Selection. Fractal and Fractional. 2023; 7(7):558. https://doi.org/10.3390/fractalfract7070558
Chicago/Turabian StyleLee, Hyun Geun. 2023. "Numerical Simulation of a Space-Fractional Molecular Beam Epitaxy Model without Slope Selection" Fractal and Fractional 7, no. 7: 558. https://doi.org/10.3390/fractalfract7070558
APA StyleLee, H. G. (2023). Numerical Simulation of a Space-Fractional Molecular Beam Epitaxy Model without Slope Selection. Fractal and Fractional, 7(7), 558. https://doi.org/10.3390/fractalfract7070558