On a System of Hadamard Fractional Differential Equations with Nonlocal Boundary Conditions on an Infinite Interval
Abstract
:1. Introduction
2. Auxiliary Results
- ;
- ;
- ;
- ;
- ;
- ;
- ;
- .
3. Main Results
- (H1)
- , , , , are nondecreasing functions, , , and (given by (6)).
- (H2)
- The functions and belong to the set of continuous functions , and they are non-zero on every subinterval of . Furthermore, both and are bounded on the entire domain .
- (H3)
- The functions are non-zero on any subinterval of , and , .
- (H4)
- (H5)
- (H6)
- (H7)
- (H8)
- (H9)
- (H10)
4. An Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tariboon, J.; Ntouyas, S.K.; Asawasamrit, S.; Promsakon, C. Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain. Open Math. 2017, 15, 645–666. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Thiramanus, P.; Ntouyas, S.K.; Tariboon, J. Positive solutions for Hadamard fractional differential equations on infinite domain. Adv. Differ. Equ. 2016, 83, 83. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Pei, K.; Baleanu, D. Explicit iteration to Hadamard fractional integro-differential equations on infinite domain. Adv. Differ. Equ. 2016, 299, 299. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Pei, K.; Zhang, R.P.A.L.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W. Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval. Math. Methods Appl. Sci. 2020, 43, 2251–2275. [Google Scholar] [CrossRef]
- Zhang, W.; Ni, J. New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval. Appl. Math. Lett. 2021, 118, 107165. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Karapinar, E.; Hakem, A. On the boundary value problems of Hadamard fractional differential equations of variable order. Math. Methods Appl. Sci. 2023, 46, 3187–3203. [Google Scholar] [CrossRef]
- Boutiara, A.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 2020, 5, 259–272. [Google Scholar]
- Cerdik, T.S.; Deren, F.Y. New results for higher-order Hadamard-type fractional differential equations on the half-line. Math. Methods Appl. Sci. 2022, 45, 2315–2330. [Google Scholar] [CrossRef]
- Gohar, M.; Li, C.; Yin, C. Finite difference methods for Caputo-Hadamard fractional differential equations. Mediter. J. Math. 2020, 17, 194. [Google Scholar] [CrossRef]
- Green, C.W.H.; Liu, Y.; Yan, Y. Numerical methods for Caputo-Hadamard fractional differential equations with graded and non-uniform meshes. Mathematics 2021, 9, 2728. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; Mchiri, L. Some results on the study of Caputo-Hadamard fractional stochastic differential equations. Chaos Solitons Fractals 2022, 155, 111757. [Google Scholar] [CrossRef]
- Wu, G.C.; Song, T.T.; Wang, S. Caputo-Hadamard fractional differential equations on time scales: Numerical scheme, asymptotic stability, and chaos. Chaos 2022, 32, 093143. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Albideewi, A.F.; Ntouyas, S.K.; Alsaedi, A. Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations. CUBO Math. J. 2021, 23, 225–237. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Henderson, J.; Luca, R. Boundary Value Problems for Fractional Differential Equations and Systems; Trends in Abstract and Applied Analysis; World Scientific: Hackensack, NJ, USA, 2021; Volume 9. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: Boston, MA, USA, 2012. [Google Scholar]
- Das, S. Functional Fractional Calculus for System Identification and Controls; Springer: New York, NY, USA, 2008. [Google Scholar]
- Henderson, J.; Luca, R. Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. (Eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives (Theory and Applications); Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Zhou, Y.; Wang, J.R.; Zhang, L. Basic Theory of Fractional Differential Equations, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics in Physics; World Scientific: Singapore, 2011. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Leggett, R.; Williams, L. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 1979, 28, 673–688. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y. Bipartite leader-following synchronization of fractional-order delayed multilayer signed networks by adaptive and impulsive controllers. Appl. Math. Comput. 2022, 430, 127243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luca, R.; Tudorache, A. On a System of Hadamard Fractional Differential Equations with Nonlocal Boundary Conditions on an Infinite Interval. Fractal Fract. 2023, 7, 458. https://doi.org/10.3390/fractalfract7060458
Luca R, Tudorache A. On a System of Hadamard Fractional Differential Equations with Nonlocal Boundary Conditions on an Infinite Interval. Fractal and Fractional. 2023; 7(6):458. https://doi.org/10.3390/fractalfract7060458
Chicago/Turabian StyleLuca, Rodica, and Alexandru Tudorache. 2023. "On a System of Hadamard Fractional Differential Equations with Nonlocal Boundary Conditions on an Infinite Interval" Fractal and Fractional 7, no. 6: 458. https://doi.org/10.3390/fractalfract7060458
APA StyleLuca, R., & Tudorache, A. (2023). On a System of Hadamard Fractional Differential Equations with Nonlocal Boundary Conditions on an Infinite Interval. Fractal and Fractional, 7(6), 458. https://doi.org/10.3390/fractalfract7060458