Coupled System of Fractional Impulsive Problem Involving Power-Law Kernel with Piecewise Order
Abstract
:1. Introduction
2. Presentation of our Problem
3. Existence Theory
4. Stability Analysis of Problem (1)
5. Application and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- ALazopoulos, K.A. Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 2006, 33, 753–757. [Google Scholar] [CrossRef]
- Cottone, G.; Paola, M.D.; Zingales, M. Fractional mechanical model for the dynamics of non-local continuum. Adv. Numer. Methods 2009, 2009, 389–423. [Google Scholar]
- Carpinteri, A.; Cornetti, P.; Sapora, A. A fractional calculus approach to nonlocal elasticity. Eur. Phys. J. Spec. Top. 2011, 193, 193. [Google Scholar] [CrossRef]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. 1997, E55, 3581. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 2010, 63, 010801. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Kusnezov, D.; Bulgac, A.; Dang, G.D. Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 1999, 82, 1136–1139. [Google Scholar] [CrossRef]
- Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D. Chaos in a fractional order Duffing system. In Proceedings of the 1997 European Conference on Circuit the Ory and Design (ECCTD97), Budapest, Hungary, 30 August–3 September 1997; Technical University of Budapest: Budapest, Hungary, 1997; pp. 1259–1262. [Google Scholar]
- Metzler, R.; Klafter, J. The random walks guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Grigorenko, I.; Grigorenko, E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef]
- Matignon, D. Stability results for fractional differential equations with applications to control processing. In Proceedings of the International IMACS IEEE-SMC Multi Conference on Computational Engineering in Systems Applications, Lille, France, 9–12 July 1996; GERF, Ecole Centrale de Lille: Lille, France, 1996; pp. 963–968. [Google Scholar]
- Wu, G.C.; Zeng, D.Q.; Baleanu, D. Fractional impulsive differential equations: Exact solutions, integral equations and short memory case. Fract. Calc. Appl. Anal. 2019, 22, 180–192. [Google Scholar] [CrossRef]
- Wu, G.C.; Luo, M.; Huang, L.L.; Banerjee, S. Short memory fractional differential equations for new memristor and neural network design. Nonlinear Dyn. 2020, 100, 3611–3623. [Google Scholar] [CrossRef]
- Huang, L.L.; Park, J.H.; Wu, G.C.; Mo, Z.W. Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 2020, 370, 112633. [Google Scholar] [CrossRef]
- Wu, G.C.; Deng, Z.G.; Baleanu, D.; Zeng, D.Q. New variable-order fractional chaotic systems for fast image encryption. Chaos 2019, 29, 083103. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Wang, Z.; Hu, H. Measuring memory with the order of fractional derivative. Sci. Rep. 2013, 3, 3431. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Wu, G.C.; Gu, C.Y.; Huang, L.L.; Baleanu, D. Fractional differential equations of variable order: Existence results, numerical method and asymptotic stability conditions. Miskolc Math. Notes 2022, 23, 485–493. [Google Scholar] [CrossRef]
- Shah, K.; Abdeljawad, T.; Ali, A. Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative. Chaos Solitons Fractals 2022, 161, 112356. [Google Scholar] [CrossRef]
- Zeb, A.; Atangana, A.; Khan, Z.; Djillali, S. A robust study of a piecewise fractional order COVID-19 mathematical model. Alex. Eng. J. 2022, 61, 5649–5665. [Google Scholar] [CrossRef]
- Ansari, K.J.; Asma; Ilyas, F.; Shah, K.; Khan, A.; Abdeljawad, T. On new updated concept for delay differential equations with piecewise Caputo fractional-order derivative. Waves Random Complex Media 2023, 2023, 1–20. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mlaiki, N.; Abdo, M.S. Caputo-type fractional systems with variable order depending on the impulses and changing the kernel. Fractals 2022, 30, 2240219. [Google Scholar] [CrossRef]
- Shah, K.; Ali, G.; Ansari, K.J.; Abdeljawad, T.; Meganathan, M.; Abdalla, B. On qualitative analysis of boundary value problem of variable order fractional delay differential equations. Bound. Value Probl. 2023, 2023, 55. [Google Scholar] [CrossRef]
- Tian, Y.; Bai, Z. Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput. Math. Appl. 2010, 59, 2601–2609. [Google Scholar] [CrossRef]
- Ali, A.; Shah, K.; Jarad, F.; Gupta, V.; Abdeljawad, T. Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations. Adv. Differ. Equ. 2019, 2019, 101. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhou, Y. On the new concept of solutions and existence results for impulsive fractional evolution equations. Dynam. Part. Differ. Equ. 2011, 8, 345–361. [Google Scholar]
- Shah, K.; Bahaaeldin, A.; Abdeljawad, T.; Gul, R. Analysis of multipoint impulsive problem of fractional-order differential equations. Bound. Value Probl. 2023, 1, 1. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Generalized Ulam-Hyers stability for fractional differential equations. Int. J. Math. 2012, 23, 1250056. [Google Scholar] [CrossRef]
- Khan, H.; Abdeljawad, T.; Aslam, M.; Khan, R.A.; Khan, A. Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation. Adv. Differ. Equ. 2019, 2019, 104. [Google Scholar] [CrossRef]
- Shah, K.; Abdeljawad, T.; Abdalla, B.; Abualrub, M.S. Utilizing fixed point approach to investigate piecewise equations with non-singular type derivative. AIMS Math. 2022, 7, 14614–14630. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Ulam-Hyers stability of Caputo fractional difference equations. Math. Methods Appl. Sci. 2019, 42, 7461–7470. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; Oliveira, E.C.D. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar] [CrossRef]
- He, W.; Chen, G.; Han, Q.L.; Qian, F. Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inf. Sci. 2017, 380, 145–158. [Google Scholar] [CrossRef]
- Wu, S.; Li, X.; Ding, Y. Saturated impulsive control for synchronization of coupled delayed neural networks. Neural Netw. 2021, 141, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Suo, J.; Sun, J.; Zhang, Y. Stability analysis for impulsive coupled systems on networks. Neurocomputing 2013, 99, 172–177. [Google Scholar] [CrossRef]
- Shah, K.; Khalil, H.; Khan, R.A. Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. Chaos Solitons Fractals 2015, 77, 240–246. [Google Scholar] [CrossRef]
- Wang, J.; Feckan, M.; Zhou, Y. Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. Bull. Sci. Mathématiques 2017, 141, 727–746. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Schaefer, H. Über die Methode der a priori-Schranken. Math. Ann. 1955, 129, 415–416. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Ansari, K.J.; Alrabaiah, H.; Aloqaily, A.; Mlaiki, N. Coupled System of Fractional Impulsive Problem Involving Power-Law Kernel with Piecewise Order. Fractal Fract. 2023, 7, 436. https://doi.org/10.3390/fractalfract7060436
Ali A, Ansari KJ, Alrabaiah H, Aloqaily A, Mlaiki N. Coupled System of Fractional Impulsive Problem Involving Power-Law Kernel with Piecewise Order. Fractal and Fractional. 2023; 7(6):436. https://doi.org/10.3390/fractalfract7060436
Chicago/Turabian StyleAli, Arshad, Khursheed J. Ansari, Hussam Alrabaiah, Ahmad Aloqaily, and Nabil Mlaiki. 2023. "Coupled System of Fractional Impulsive Problem Involving Power-Law Kernel with Piecewise Order" Fractal and Fractional 7, no. 6: 436. https://doi.org/10.3390/fractalfract7060436
APA StyleAli, A., Ansari, K. J., Alrabaiah, H., Aloqaily, A., & Mlaiki, N. (2023). Coupled System of Fractional Impulsive Problem Involving Power-Law Kernel with Piecewise Order. Fractal and Fractional, 7(6), 436. https://doi.org/10.3390/fractalfract7060436