Relative Controllability of ψ-Caputo Fractional Neutral Delay Differential System
Abstract
:1. Introduction
- The existence and uniqueness of solution to -Caputo NFDDS is analyzed.
- We investigate the Ulam–Hyers stability of -Caputo NFDDS.
- The neutral —delayed perturbation of Mitttag–Leffler matrix function exhibits the Grammain matrix, based on this matrix we derive the necessary and sufficient condition for the linear system which is relatively controllable.
- Via Krasnoselskii’s fixed-point technique, we scrutinize the relative controllability of the semi-linear -Caputo NFDDS.
2. Basic Preliminaries
- The —neutral delayed perturbation Mittag–Leffler-type matrix function reduces to the Mittag–Leffler-type matrix function [44], i.e., , when .
- When , the —neutral delayed perturbation Mittag–Leffler-type matrix function corresponds to the delayed perturbation Mittag–Leffler-type matrix function [45].
- For reduces to delayed Mittag–Leffler-type matrix function [45], where .
3. Existence and Uniqueness
- .
4. Relative Controllability
- ;
- are continuous and compact;
- is a contractive;
- Define a map into byThen, exist and takes values in .
- The function is continuous and such that for arbitrary,Now, let us introduce the following notations: ..
5. Illustrative Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volterra, V. Sur la théorie mathématique des phénomènes héréditaires. J. Math. Pures Appl. 1928, 7, 249–298. [Google Scholar]
- Volterra, V.; Brelot, M. Lecons sur la Théorie Mathématique de la Lutte pour la Vie; Gauthier-Villars: Paris, France, 1931. [Google Scholar]
- Minorskii, N. Self-excited oscillations in dynamical systems possessing retarded actions. J. Appl. Mech. 1942, 9, 65–71. [Google Scholar] [CrossRef]
- Coimbra, C.F.M. Mechanics with variable-order differential operators. Ann. Phys. 2003, 515, 692–703. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
- Obembe, A.D.; Hossain, M.; Abu-Khamsin, S. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 2017, 152, 391–405. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Al-Mekhlafi, S.M. Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. J. Adv. Res. 2016, 7, 271–283. [Google Scholar] [CrossRef]
- Tarasov, V. Handbook of Fractional Calculus with Applications; De Gruyter: Berlin/Heidelberg, Germany, 2019; Volume 4. [Google Scholar] [CrossRef]
- Kaliraj, K.; Lakshmi Priya, P.K.; Ravichandran, C. An Explication of Finite-Time Stability for Fractional Delay Model with Neutral Impulsive Conditions. Qual. Theory Dyn. Syst. 2022, 21, 161. [Google Scholar] [CrossRef]
- Lakshmi Priya, P.K.; Kaliraj, K. An application of fixed point technique of Rothe’s-type to interpret the controllability criteria of neutral nonlinear fractional order impulsive system. Chaos Solitons Fractals 2022, 164, 112647. [Google Scholar] [CrossRef]
- Kaliraj, K.; Muthuvel, K. Existence of solution for Volterra Fredholm type stochastic fractional integro-differential system of order μ∈(1,2) with sectorial operators. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Khusainov, D.Y.; Shuklin, G.V. Linear autonomous time-delay system with permutation matices solving. Stud. Univ. Žilina 2003, 17, 101–108. [Google Scholar]
- Li, M.; Wang, J.R. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 2018, 324, 254–265. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations. Math. Methods Appl. Sci. 2019, 42, 5489–5497. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Multi-delayed perturbation of Mittag-Leffler type matrix functions. J. Math. Anal. Appl. 2022, 505, 125589. [Google Scholar] [CrossRef]
- You, Z.; Fečkan, M.; Wang, J. Relative controllability of fractional delay differential equations via delayed perturbation of Mittag-Leffler functions. J. Comput. Appl. Math. 2020, 378, 112939. [Google Scholar] [CrossRef]
- Diblík, J.; Fečkan, M.; Pospíšil, M. Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. 2013, 65, 64–76. [Google Scholar] [CrossRef]
- Diblìk, J.; Fečkan, M.; Pospíšil, M. On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 2014, 52, 1745–1760. [Google Scholar] [CrossRef]
- Diblík, J.; Mencakova, K. Representation of solutions to delayed linear discrete systems with constant coefficients and with second-order differences. Appl. Math. Lett. 2020, 105, 106309. [Google Scholar] [CrossRef]
- Diblík, J.; Khusainov, D.Y.; Bastinec, J.; Sirenko, A.S. Exponential stability of linear discrete systems with constant coefficients and single delay. Appl. Math. Lett. 2016, 51, 68–73. [Google Scholar] [CrossRef]
- Ding, X.; Nieto, J.J. Controllability and optimality of linear time-invariant neutral control systems with different fractional orders. Acta Math. Sci. 2015, 35, 1003–1013. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions for linear fractional systems with pure delay and multiple delays. Math. Methods Appl. Sci. 2021, 44, 12835–12850. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices. Appl. Math. Comput. 2021, 410, 126443. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Representation of solutions of delayed linear discrete systems with permutable or nonpermutable matrices and second-order differences. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2022, 116, 58. [Google Scholar] [CrossRef]
- Liang, C.; Wang, J.; O’Regan, D. Controllability of nonlinear delay oscillating systems. Electron. J. Qual. Theory Differ. Equ. 2017, 47, 1–18. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Q.; Li, G. Exact solutions and Ulam-hyers stability for fractional oscillation equations with pure delay. Appl. Math. Lett. 2021, 112, 106666. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Aydin, M. Representation of solutions of nonhomogeneous conformable fractional delay differential equations. Chaos Solitons Fractals 2021, 150, 111190. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Delayed linear difference equations: The method of Z-transform, Electron. J. Qual. Theory Differ. Equ. 2020, 53, 1–12. [Google Scholar] [CrossRef]
- Mahmudov, N.I. A novel fractional delayed matrix cosine and sine. Appl. Math. Lett. 2019, 92, 41–48. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Representation of solutions of discrete linear delay systems with non permutable matrices. Appl. Math. Lett. 2018, 85, 8–14. [Google Scholar] [CrossRef]
- Pospíšil, M.; Škripková, L. Representation of solutions of neutral differential equations with delay and linear parts defined by pairwise permutable matrices. Miskolc Math. Notes 2015, 16, 423–438. [Google Scholar] [CrossRef]
- Pospíšil, M. Relative controllability of neutral differential equations with a delay. J. Math. Anal. Appl. 2017, 55, 835–855. [Google Scholar] [CrossRef]
- You, Z.; Fečkan, M.; Wang, J. On the relative controllability of neutral delay differential equations. Eur. J. Control 2021, 62, 082704. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, J.; Jiang, W. General solution of linear fractional neutral differential difference equations. Discrete Dyn. Nat. Soc. 2013, 2013, 489521. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Fu, H.; Wu, G.C.; Yang, G.; Huang, L.L. Continuous-time random walk to a general fractional Fokker-Planck equation on fractal media. Eur. Phys. J. Spec. Top. 2021, 230, 3927–3933. [Google Scholar] [CrossRef]
- Fan, Q.; Wu, G.C.; Fu, H. A note on function space and boundedness of a general fractional integral in continuous time random walk. Eur. Phys. J. Spec. Top. 2021, 29, 95–102. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y. Finite-approximate controllability of impulsive ψ-Caputo fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 2023, 26, 1326–1358. [Google Scholar] [CrossRef]
- Dongping, L.; Yankai, L.; Fangqi, C.; Xiaozhou, F. Instantaneous and Non-Instantaneous Impulsive Boundary Value Problem Involving the Generalized ψ-Caputo Fractional Derivative. Fractal Fract. 2023, 7, 206. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited: London, UK, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999; Volume 198, pp. 1–340. [Google Scholar]
- Aydin, M.; Mahmudov, N.I. The μ-neutral fractional multi-delayed differential equations. arXiv 2022, arXiv:2206.10002. [Google Scholar]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations, 2nd ed.; WSPC World Scientific: Singapore, 2017. [Google Scholar]
- Li, M.; Wang, J.R. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Z.; Fečkan, M. Relative controllability of semilinear delay differential systems with linear parts defined by permutable matrices. Eur. J. Control 2017, 38, 39–46. [Google Scholar] [CrossRef]
- Krasnoselskii, M. Topological Methods in the Theory of Nonlinear Integral Equations; Pergamon Press: New York, NY, USA, 1964. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthuvel, K.; Sawangtong, P.; Kaliraj, K. Relative Controllability of ψ-Caputo Fractional Neutral Delay Differential System. Fractal Fract. 2023, 7, 437. https://doi.org/10.3390/fractalfract7060437
Muthuvel K, Sawangtong P, Kaliraj K. Relative Controllability of ψ-Caputo Fractional Neutral Delay Differential System. Fractal and Fractional. 2023; 7(6):437. https://doi.org/10.3390/fractalfract7060437
Chicago/Turabian StyleMuthuvel, Kothandapani, Panumart Sawangtong, and Kalimuthu Kaliraj. 2023. "Relative Controllability of ψ-Caputo Fractional Neutral Delay Differential System" Fractal and Fractional 7, no. 6: 437. https://doi.org/10.3390/fractalfract7060437
APA StyleMuthuvel, K., Sawangtong, P., & Kaliraj, K. (2023). Relative Controllability of ψ-Caputo Fractional Neutral Delay Differential System. Fractal and Fractional, 7(6), 437. https://doi.org/10.3390/fractalfract7060437