Some New Applications of the q-Analogous of Differential and Integral Operators for New Subclasses of q-Starlike and q-Convex Functions
Abstract
:1. Introduction and Definitions
2. Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Oros, G.I. Study on new integral operators defined using confluent hypergeometric function. Adv. Differ. Equ. 2021, 2021, 342. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators. Symmetry 2021, 13, 1553. [Google Scholar] [CrossRef]
- Cătaş, A.; Şendruțiu, R.; Iambor, L.F. Certain subclass of harmonic multivalent functions defined by derivative operator. J. Comput. Anal. Appl. 2021, 29, 775–785. [Google Scholar]
- Oros, G.I. New differential subordinations obtained by using a differential-integral Ruscheweyh-Libera operator. Miskolc Math. Notes 2020, 21, 303–317. [Google Scholar] [CrossRef]
- Páll-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi-Bazilevič functions of Ma-Minda type involving the Sălăgean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Darus, M. New Symmetric Differential and Integral Operators Defined in the Complex Domain. Symmetry 2019, 11, 906. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Elobaid, R.M.; Obaiys, S.J. Geometric Inequalities via a Symmetric Differential Operator Defined by Quantum Calculus in the Open Unit Disk. J. Funct. Spaces 2020, 2020, 6932739. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Cotîrlă, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Amini, E.; Omari, S.A.; Nonlaopon, K.; Baleanu, D. Estimates for coefficients of bi- univalent functions associated with a fractional q-difference operator. Symmetry 2022, 14, 879. [Google Scholar] [CrossRef]
- Aldawish, I.; Swamy, S.R.; Frasin, B.A. A special family of m-fold symmetric bi-univalent functions satisfying subordination condition. Fractal Fract. 2022, 6, 271. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference operator in harmonic univalent functions. AIMS Math. 2021, 7, 667–680. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jan, R.; Jan, A.; Deebai, W.; Shutaywi, M. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Chaos 2021, 31, 053130. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fract. 2020, 134, 109705. [Google Scholar] [CrossRef]
- Park, J.H.; Srivastava, H.M.; Cho, N.E. Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Math. 2021, 6, 11380–11402. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, R. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Umar, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. RACSAM 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboac, T. An Avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.A.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Noor, K.I.; Arif, M. Mapping properties of an integral operator. Appl. Math. Lett. 2012, 25, 1826–1829. [Google Scholar] [CrossRef]
- Marin, M.; Ellahi, R.; Valse, S.; Bhatti, M.M. On the decay of exponential type for the solutions in a dipolar elastic body. J. Taibah Univ. Sci. 2020, 14, 534–540. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Darus, M. Inclusion relations of q-Bessel functions associated with generalized conic domain. AIMS Math. 2021, 6, 3624–3640. [Google Scholar] [CrossRef]
- Jia, Z.; Khan, S.; Khan, N.; Khan, B.; Muhammad, A. Faber polynomial coefficient bounds for -Fold symmetric analytic and bi-univalent functions involving q–calculus. J. Funct. Spaces V 2021, 2021, 5232247. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Pure Appl. Math. Q. 1910, 41, 193–203. [Google Scholar]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Ind. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Sălăgean, G.S. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian-Finnish Seminar; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Akça, H.; Benbourenane, J.; Eleuch, H. The q-derivative and differential equation. J. Phys. Conf. Ser. 2019, 1411, 012002. [Google Scholar] [CrossRef]
- Breaz, D.; Breaz, N. Two Integral Operators; Studia Universitatis Babes-Bolyai Mathematica: Cluj-Napoca, Romania, 2002; Volume 13, p. 21. [Google Scholar]
- Breaz, D.; Owa, S.; Breaz, N. A new integral univalent operator. Acta Univ. Apul. 2008, 16, 11–16. [Google Scholar]
- Ravichandran, V. Certain applications of first order differential subordination. Far East J. Math. Sci. 2004, 12, 41–51. [Google Scholar]
- Ravichandran, V.; Darus, M.; Khan, H.M.; Subramanian, K.G. Differential subordination associated with linear operators defined for multivalent functions. Acta Math. Vietnam 2005, 30, 113–121. [Google Scholar]
- Lupas, A.A.; Loriana Andrei, L. Certain integral operators of analytic functions. Mathematics 2021, 9, 2586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shaikh, S.B.; Abubaker, A.A.; Matarneh, K.; Khan, M.F. Some New Applications of the q-Analogous of Differential and Integral Operators for New Subclasses of q-Starlike and q-Convex Functions. Fractal Fract. 2023, 7, 411. https://doi.org/10.3390/fractalfract7050411
Al-Shaikh SB, Abubaker AA, Matarneh K, Khan MF. Some New Applications of the q-Analogous of Differential and Integral Operators for New Subclasses of q-Starlike and q-Convex Functions. Fractal and Fractional. 2023; 7(5):411. https://doi.org/10.3390/fractalfract7050411
Chicago/Turabian StyleAl-Shaikh, Suha B., Ahmad A. Abubaker, Khaled Matarneh, and Mohammad Faisal Khan. 2023. "Some New Applications of the q-Analogous of Differential and Integral Operators for New Subclasses of q-Starlike and q-Convex Functions" Fractal and Fractional 7, no. 5: 411. https://doi.org/10.3390/fractalfract7050411
APA StyleAl-Shaikh, S. B., Abubaker, A. A., Matarneh, K., & Khan, M. F. (2023). Some New Applications of the q-Analogous of Differential and Integral Operators for New Subclasses of q-Starlike and q-Convex Functions. Fractal and Fractional, 7(5), 411. https://doi.org/10.3390/fractalfract7050411