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Abstract: In the geometric function theory of complex analysis, the investigation of the geometric
properties of analytic functions using g-analogues of differential and integral operators is an important
area of study, offering powerful tools for applications in numerical analysis and the solution of
differential equations. Many topics, including complex analysis, hypergeometric series, and particle
physics, have been generalized in g-calculus. In this study, first of all, we define the g-analogues of a
differential operator (DRT/’: ) by using the basic idea of g-calculus and the definition of convolution.
Additionally, using the newly constructed operator (DRT,’,;1

integral operators (FT;Z /?Yz ,, and GT;@Z ,,)» and by employing these operators, new subclasses

of the g-starlike and g-convex functions are defined. Sufficient conditions for the functions (f) that

), we establish the g-analogues of two new

belong to the newly defined classes are investigated. Additionally, certain subordination findings
for the differential operator (DRT,'; ) and novel geometric characteristics of the g-analogues of the
integral operators in these classes are also obtained. Our results are generalizations of results that
were previously proven in the literature.

Keywords: analytic functions; convolution; quantum (or g-) calculus; g-difference operator; g-integral
operator; g-starlike and g-convex functions; differential subordination

MSC: 05A30; 30C45; 11B65; 47B38

1. Introduction and Definitions

Since the dawn of analytic function theory, when Alexander [1] introduced the first
integral operator in 1915, differential and integral operators have been the subject of
scholarly research. Novel combinations of differential and integral operators are constantly
being invented (see [2,3]). Saldgean and Ruscheweyh operators have great importance
in research [4-7]. Recent research on differential and integral operators from several
perspectives, including quantum calculus, has produced remarkable findings that have
applications in other branches of physics and mathematics. Some fascinating uses of
differential and integral operators are highlighted in a recent survey-cum-expository review
study [8]. Some examples of publications on the extension of Sdldgean differential operators
are included in [9,10], with examples of g-extensions in [11-18]).

The theory of real and complex-order integrals and derivatives has been used in the
study of geometric functions, and it has also shown potential for mathematical modeling
and analysis of practical concerns in the applied sciences. Analyzing the dynamics of
dengue transmission [19] and creating a novel model of the human liver [20] are both
examples of studies that are included within the aforementioned field of research.
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In particular, the family of integral operators related to the first-kind Lommel functions
was introduced in [21] and is crucial for understanding both pure and applied mathematics.
It is now possible to examine differential equations from the perspectives of functional
analysis and operator theory due to differential operators. Differential operator properties
are employed to solve differential equations using the operator technique. For the integral
operators introduced in this work, several interesting geometric and mapping features are
also deduced. In this line of study, we use the concepts of quantum operator theory and
introduce the g-analogues of the differential operator, then consider this operator. We also
introduce two new integral operators in this paper. From the viewpoints of operator theory
and functional analysis, the study of differential equations utilizes operators, and with
more investigation, it might be discovered that such operators play a role in solving partial
differential equations.

In the open unit disc U = {z € C : |z] < 1}, let A stand for the collection of all analytic
functions, and let every f € A in this set have a series of the form:

f(z) :z+iajzf,ze u. 1)
j=2

The class T is a subclass of A, and every f € T has a series of the form

flz)=z— 3 ajzj,z el )
j=2

For 0 < a < 1, let S*(«) stand for the set of all star-shaped functions of order &, which

we define as follows: /
fiN o[ 2 (2)
S(a)—{fEA.Re<f(Z)>>a}.

S*(0) = S*.

Fora =0,
The convolution of the functions f, g € A is denoted by
(F+2)(2) =z+f2ajbjzf= g+ 1)), zel,
=
where f(z) is defined by Equation (1), and

gz)=z+) bjzj.
j=2

Definition 1 ([22]). If KCiand Ky are two analytic functions in the open unit disk (U), if there is
an analytic function (ug) in U, then ICq is subordinate to ICy, (K1 < Kp) with

up(0) =0, and |up(z)| <1

the set of all z € U then
Ki(z) = Ka(uo(2)).

If ICy is univalent, then
K1 < Ky = K1(0) = K»(0)

and
K1(U) C Ky(U).
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Definition 2 ([22]). Let ¢ : U x C®> — C and h is univalent in U. If s is analytic in U and the
following differential subordination conditions hold:

w(s(z),zs,(z),zzs" (z);z) < h(z), forallz € U, (©)]

then s is the solution of the differential subordination. Dominant refers to the univalent function (r)
if s < r for all s satisfying (3). A dominant 7 satisfying 7 < r for all dominants r of (3) is said to be
the best dominant of (3). Up to a rotation of U, the best dominant is unique.

Geometric function theory, g-difference equations, and g-integral equations are only
a few examples of the recent generalization of quantum (g-) calculus across many areas
of mathematics and science. Starting with the basics of g-calculus theory, Jackson [23]
introduced the g-derivative and g-integral operators; then, Ismail et al. [24] defined g-
starlike functions using the same ideas. After the g-difference operator was introduced, a
rush of studies examined the g-analogues of other differential operators. In order to build a
new class of analytic functions in the conic domain, Kanas and Raducanu [25] created the
g-analogue of the Ruscheweyh differential operator. The multivalent generalizations were
later provided by Arif et al. [26]. Using the basics of g-calculus, Zang et al. [27] constructed
a generalized conic domain and studied a new category of g-starlike functions in this
context. Geometric function theory (GFT) and g-calculus theory both have been the subject
of a great deal of research by numerous mathematicians to date (for details, see [28-34]).
It has been established that time-scale calculus, a more general branch of mathematics,
involves quantum calculus. Time-scale calculus enables the investigation of dynamic
equations according to a cogent framework in both discrete and continuous domains.

The main contribution of this study is the quantum calculus operator theory. We
develop several new forms of g-analogues of the differential and integral operators using
the fundamental principles of quantum calculus operator theory and the g-difference
operator. Using these operators, we build many new classes of g-starlike and g-convex
functions and investigate several interesting features of the analytic function (f) that
belongs to these classes.

Definition 3. Jackson [23] provided the following definition of the g-difference (or derivative)
operator (9y) for analytic functions (f), where g € (0,1).

o) = LB ng

= 1+ i[j]qajzjfl, 4
j=2

where [f), is the g-number and defined as:

P 1—g
= 14+q+¢+...+¢7}, jeN
and
[0], =0
The factorial of q, [j],! is identified as follows:
[]]q' = []]q[/ - 1]17[/ - 2}11 T [z]q[l]q
and

0], =1.
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Definition 4. Jackson [35] defined the g-integral for the function f € A as follows:
[F@d@) = 1=z Y f(72)d
j=0

By using the same technique of the Al-Oboudi differential operator [36], now we define the
q-analogues of the Al-Oboudi differential operator (D! g ) for analytic functions as follows:

Definition 5. For A > 0,9 € (0,1), m,n € N, and f € A, the operator D)’ﬁq A — A, s
defined by

D}, f(2) f2),
Dif(2) = (1=A)f(z) +2204f(2) = Dpgf (2)

Dy f(z) = (1-A)DI'f(z) + Azd, (D;;H f(z)) = Dy (DY f(2).

After some simple calculation, we have
m .
DYt f(2) =2+ Y {A ([, ~1) +1} afl 5)

Remark 1. For the function (f) of the form (2), the series expansion of DY' g Is given by:
© mo.
DY f(z) =z - Z{/\([}]q - 1) + 1} a;z.

j=2

Remark 2. Specifically, when A =1, the operator D}’ g simplifies to the Salidgean q-differential
operator given by [37].

Remark 3. If q — 1—, then we obtain the Al-Oboudi differential operator studied in [36].

Remark 4. If A = 1, and q — 1—, then we obtain the Siligean differential operator defined
in [38].

The Ruscheweyh g-differential operator (R}) was developed by Kanas and Raducanu
utilizing fundamental concepts from operator theory in quantum mechanics. Very intrigu-
ing aspects of this operator in the conic domain were explored; they also created a new
subclass of g-starlike functions connected to the conic domain.

Definition 6 ([25]). To define the operator Rj : A — Aforn € Nand f € A, we write
Rof(z) = f(2),
RIf(z) = z0,f(2)

Rif(z) = ———F5— z€U
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or

n _ o LGtm)
Rif(z) = Z—I—ngajf (6)

e [n+1]
= z+) ———a;2.
= -1

The standard quantum calculus has been extensively studied by numerous mathemati-
cians, physicists, and engineers. Applications in areas including engineering, economics,
mathematics, and other disciplines have helped g-calculus improve in a number of ways.
If we consider the above facts about g-calculus in many areas, it is safe to assume that
g-calculus has functioned as the interface between mathematics and physics throughout
the last three decades. In addition, the g-calculus operator, the g-integral operator, and the
g-derivative operator are used to build several classes of regular functions and play an
intriguing role, since they are used and applied in many different branches of mathematics,
including the theory of relativity, the calculus of variations, orthogonal polynomials, and
basic hypergeometric functions. In [39], Akca et al. used the g-derivative and generated
solutions to some differential equations. Therefore, we have also made use of g-calculus
and provide certain important new types of g-analogues of differential and integral op-
erators, as mentioned in this paper. Non-commutative g-calculus is a generalization of
classical calculus as developed by Newton and Leibnitz. This g-derivative may be used
with any function whose domain of definition does not include 0. When g equals 1, the
result simplifies to the standard derivative; that is, the results obtained by the g-differential
and integral operators are quite effective and efficient.

Here, we define the g-analogues of differential operator DRT,'; by using the definition
of convolution on the newly defined differential operator D}’ g and the Ruscheweyh g-
differential operator Rj. This newly defined operator will help us to define two new
integral operators introduced in this study.

Definition 7. For f € A,n,m € N = {1,2,3...} and A > 0, the g-analogues of differential
operator DRT'; is defined by

DRT;JC(Z) = D)r(l,qf(z) * Rgf(z), ze U. (7)

Using (5) and (6) in (7) and applying the definition of convolution, we obtain the following
series expansion of DRT’q” :

mn o = . m T (j+71) .
DR f(z) = z+]§{/\([]}q -1)+1} U_l‘i]!rwa]zzz,z cu.

Remark 5. The series expansion of DRT'; for the function (f) of type (2) is as follows:

mn _ = . m  Tq(j+n) ‘
DRy fz) =z _]g{)‘(mq - 1) + 1} ma?Z]/z ey,

where A > 0, m,n € N. The following identity holds for the function f € T:

[A] (Al
DRy M f(2) = (1 - | PRUFE) (S )2 (DR ). ®)
The following formulation introduces two new integral operators, F;\nvnl ,6172 - and
T;qu > while considering the convolution operator DR;\””: f(z):
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Definition 8. For functions f; € T,and v; € R, i € {1,2,3...,1}, the integral operators

FIA nd G ar in llows:
A2, a GA 1,72, Y1 e defined as follows

- DR’”” m DR’””fl()
)\71’22 N7 /( > ( r ) dqt )

and

o 2 DRy f1(1)\ ™ DR™ f,(H)\ \ "
(PO (PO o
0

A>0,9€(0,1), mneN, and z € U.

where

Remark 6. For A =0, m = 0, and g — 1—, we obtain the integral operators introduced by Breaz
and Breaz in [40,41].

We establish several new types of g-starlike and g-convex functions by utilizing the
g-difference operator and the g-analogues of the differential operator DR'A"’; provided in
Definition 7.

Definition 9. Let an analytic function (f) of the form (2) be a member of class R(8, q), if it satisfies
the following inequality

R =2 (DR £(2)) <6, forallze U, and 6 > 1
e , forallz € U, an :
DRY"'f(z)

Definition 10. Let an analytic function (f) of the form (2) be a member of class C (6, q) if it satisfies
the following inequality

293 (DR/’C';f(z))
Re[ 1+ - <6, forallze U, and 6 > 1.
9 (DR} f(2))

Definition 11. Let an analytic function (f) of the form (2) be a member of class RA(B, u,q), if

20, (DR} f(2)) < #‘ﬁ (zaq(DRKfi { ()z))) e
DR} f(z ’

DR f(2)
0<B<1 and 0 <pu <1.

-1 u,

where

Definition 12. Let an analytic function (f) of the form (2) be a member of class CA(B, i, q), if

22 (DRI 1) ﬁ(H =03 (DR} f(2 >>) o

% (DRI (2)) 3, (DR} £(2)) et

< H

where
0<B<1, and 0 <pu<1.
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. . . . m,n,q m,n,q
In the following definitions, we consider integral operators F) s,y A G AT T2

given in Definition 8, and we define two new subclasses of g-convex functions:

Definition 13. Let an analytic function (f;, i € {1,2,...1)) of the form (2) be a member of class
LAF(A, B, 1t 11,72, 70,49) if

202 (Fm’n’q (z)) 202 (Fm’n’q (z))
I\ Ar,r2,..m 9\ Ar,r2,.m

Re (1+ 5 (Fm,n,q (Z)) 2 5 (Fm,n,q (Z))
T\ Ar1,r2,..m T\ Ar1,72,..m

where A > 0,>0,-1<pu<1,and F/T;:l’{fm - (z) is defined by (9).

+u,zel,

Definition 14. Let an analytic function (f;, i € {1,2,...1)) of the form (2) be a member of class
LAG(A/ ﬁ/ W, ¥1,72,... 71, ‘7) Zf

2 m,n,q 2 m,n,q
Zaﬂ (G)\/}’l,’hw’Yl) Zaﬂ (F A2, (Z))

Re mn,q =P m,n,g
9 (G/\ﬁlﬂz,.ﬂz) 9 (PA,“YL“YZ,“% (Z))

where A >0, >0, 1 < pu <1,and Gy, (z)is defined in (10).

+u,zel,

This article is composed of four sections. We briefly reviewed some fundamental
geometric function theory ideas, investigated some new g-analogues of differential and
integral operators, and considered these operators to define a number of new subclasses
of g-starlike and g-convex functions in Section 1 because they were important to our main
finding. In Section 2, we provide some known lemmas and investigate some new lemmas
that are used to prove our main results. In Section 3, we present our key findings, and in
Section 4, we provide concluding remarks.

2. Set of Lemmas

Here, we provide some previously established lemmas and prove four new ones that
are used in the proof of our key findings.

Lemma 1 ([42]). For convex univalent function p and

1-9¢ zp” (2)
3 +2p(z) + <1+ () >

Re > 0.

If f € A satisfies

2 (@), gt )

— Z 22 Z/Z
78 ) < (1=8)p(z) +0p°(z) +vzp (2),

then, /
T e

where 0 < ¥ <1, and p(z) is the best dominant.

Lemma 2 ([42]). Let an analytic function (p) be in the open unit disk (L) and

p(0) =1, and h(z) = 22 &)
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is starlike and univalent in U. If f € A satisfies

"

F2) . 2f ()
A OIR

then,

2f (2)
7 P

where p(z) is the best dominant.

Lemma 3 ([22]). Consider the case when p is univalent and ¢ is analytic in the set of all p(U). If

!

zp (2)
¢(p(2))

is starlike and , /
P(9(2))zy (z) < P(p(2))zp (2), z € U,
then,
¥(z) < p(2),

where p(z) is the best dominant.

Lemma 4 ([43]). For complex numbers, a, B and y and v # 0. Let analytic functions s and p be
in U, and p be a convex univalent; suppose that

L zp’ (2)
7+7p(z)+<1+ () )

Re > 0.

Ifs(z) =14 c1z+ ... is analytic in U and
as(2) + ps*(2) + 125 (2) < ap(z) + B (2) + 120 (2),
then, s(z) < p(z), and the function p(z) is the best dominant.

Now, we generalize the lemmas introduced in [22,43] by using the fundamentals of
g-calculus operator theory.

Lemma 5. Consider the case when p is univalent and ¢ is analytic in the set of all p(U). If

z94p(z)
2(p) ()
is starlike and
P(P(2))z0q9(z) < ¢(p(2))z04p(2), z € U, (12)

then, (z) < p(z), and p(z) is the best dominant.

Proof. Suppose that ¢ is analytic in a domain containing p(U) and p is analytic in U.
Letting g — 1— in (11) and (12) yields

which is starlike; then,

!

29 (2)p((2)) < zp (2)p(p(2)), z € U.
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Then, from the lemma in [22], we obtain ¢(z) < p(z), and p(z) is the best domi-
nant. [

Lemma 6. We assume that p and h are analytic in U and that h is convex and univalent in U,
where «, ¥, v € C. Furthermore, we assume

x 20 293h(z)
o o)+ <1+ ") )1 > 0. (13)

If p(z) is analytic in U and

Re

ap(z) + 19;92(2) +yzdyp(z) < ah(z) + ﬂhz(z) + yz94h(z), (14)
then, p(z) < h(z), and h(z) is the best dominant.

Proof. Suppose that p and h are analytic in U. Letting 4 — 1— in (13) and (14), we have

a 28 zp’ (2)
7+ 7p(z)+<1+ () >] > 0.

If p(z) is analytic in U and

Re

ap(z) + 0P (2) + vzp (z) < ah(z) + Oh2(z) + yzh (2), z € U,

then, from the lemma in [43], we obtain p(z) < h(z), and h(z) is the best dominant. [

el .
Lemma7. For fi(z) =z— ) a;;Z € T,i € {1,2,...1), we get

j=2
_ 1 M TyGtn) o
Za?(FT;:quWz.m(ZD _y i ]Zz([] ){A(m" 1) +1} [Ty () 3,
anq - ! . ol a m r (]+Yl) 2 i 4
aq( ELe %( )> 1 ! ]Ez{/\@]q 1) +1} U—lj]!rq(1+n)ai,fzj
where F)'" o 72 o (z) is defined in (9).

Proof. For fi(z) =z— ¥ al-,]-zj,i €{1,2,...1), then
j=2

2 (DR (2)) = 1—2[; AU, )+1}mma$]zf 1

We obtain

o, Ry f1(2) Ry fi(2)
e o) (BN (P

A 00) = B 0) srrAE

+...+El<aq(FT'ynlirz 71( )))DRmnfl( )’

SO
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where

EZ%(

We calculate the expression

A

Zaz( Ar,72,..M (Z))

9 (F/T’Ynl?rz ’71( )>

i=1
We find

2 (pming

Zaq (FA 71,72, ’Yz( z)

m,n,q
9 (F/\ﬁlﬁz,‘ﬂz (2)

i
ZZ%

2(DR} fi(2)) — DR} fi(z >)
-2

zaq(DRm " (2 ))
DR} fi(z)

_1],

Ly(i+n) o

)
AU -1) 1}

y z—guq Wai,jzf_
| R ) T

_ i% f%(["]ql){)‘(mq1)+1}m£maz%fzj
T T e

o (EOCY0)  ie

O

Lemma 8. For fi(z) = Z a7, i€ {1,2,.

=2

1), we get

4

et o) e (B0 )
(Gt @) H ! _]Z oA (1, - 1) + }m%“@ﬂ
where G “1;1 -~ 'n( z) is defined in (10).

Proof. For fi(z) =z— Y, ai,jz]',i €{1,2,...1
j=2

(o (PRI A2)) -

aq((;:\”;qn 71( )) -

ag(

SO

—

mnq _
A, 71( )) B

RACH

i=1

), we obtain

(o))",

))a 2(DR}fi(2))
8, (DR} fi(2))
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202 (Gm A (z))
. T\ 7A1,72,..7
We calculate the expression o 2
o

mn,q
G/\ M,72,..71 (Z)>

e

(O @) _ & T2
- 1

@m“ﬂaq

o (G, ) S| % (DR AG)
We find
@3 (G, ()
aq (G?T/’:lll,q“rz,...’n (z))
le _jiz[j]q([j_ ) (A (0 = 1) + 1} gt
TR T R )
Hence,
Za ( 1)1\1';1qu2 N7 Z)
8‘7( T;ﬂw 71 )
B0 00+ i
B S TR A Ry
O

3. Main Results

We then provide necessary and sufficient criteria for the classes LAF (A, B, 1, v1,72,..71,9)
and LAG(A, B, 1t, v1,72,...71,9), Where

A>0,>0,and —1<pu<1.

Theorem 1. Fori € {1,2,3...1},let f; € T. Then, f; € LAF(A, B, 1, v1,72,..71,49) if and only

if
© /o . m T (j+n i
| £ (0= 1){a (1, 1) +1} it
Y B+ s — — | <1-p (5
i=1 1—j§2{)\([ﬂq—1)+1} %“@Z}

where >0, -1 <u <1
Proof. In order to demonstrate that (15) is true, we must prove that

EGEC >)‘_R€(zaz( Bl (2 >)> 3

aq(F;\WWnl?Yz “rl( )) aq<F)’\n’:1qu ’H( ))

1—p.
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We have
2 m,n,q 2 m,n,q
2% (PAm,vz,ﬂz (Z)) | _ Re (Zaq (P AT, (Z)>
mn,g mn,q
9% (F ALY, (z )) 9 (F ALY, (z ))

Applying Lemma 7, we obtain

) <(B+1)

2 ( g
Zaq (F/\/’YI,WZ,“.7I (Z)> ‘

o (it (=)

" Zf<§%;f’§1(j>) |
BT —].g([ﬂzo—l){A(U]q—1) Zl}mmaz‘%ﬂ“
= 1_j>::2{2x([j]q—1)+1} T
< (/5+1)le%~ fi([j]q_l>{A(U]q_l)H}mu—%xlm”ﬂ!ﬂ1|
= RN R )
< B+ f§2<[j]q_1>{A(U]q_l)“}mvrﬂfﬂflmﬂﬁf o
_ - 1—j§2{A(mq—1)+1}m[%a% =

Therefore, we deduce

Zaz Pm/n/q (Z) 282 Fm,n,q (Z)
q( AL Y2, ) _ Re ‘7( A, Y2, ) <1-uy,

(B @) | (s, )

p

or, equivalently,

zo2 (A ()
Re (1 n 4( n):zlé’rz,...“n ) > B
a‘i (F ALY, (z ))
Thus/ fl € LAF<A/ ,B/ M, 71,772,710 Q)

Contrarily, assume that f; € LAF(A, B, 4, 71,72,..71,q)- Lemma 7 and (15) allow us
to derive

2 m,n,q
22 (F ()

m,n,q
a‘i (F Ar1,72,..7 (Z))

+ .

1y fzz<[j]q_l){A<mf1>“}m%aﬁjw—q
N _]-i{)‘(mq —1) + 1} e |2
g (B0 |
S L 1) )
> ﬁi% f§2<mq;1){)‘(mq_1)+;}m%”§2j1 "
T - BP0y 1) e
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which is equivalent to

21: 6 ji(mq - 1) {A([ﬂq - 1) + 1}m%aszi*1
T BB )

) {a(01,-1) +1) P
A= L {0 -1) 1) e
< 11—y

which reduces to

z E (0, - {0 1) 1) e

=2
Y (B+1)yi | = "G =1-w
) . NGt o
= 1= £{a (1, -1) +1} e

Inequality (15) is found when z — 1— is on the real axis. [

For g — 1—, we obtain known result that were proven in [44].

Corollary 1 ([44]). Fori € {1,2,3...1},let f; € T. Then, f; € LAF(A, B, u,71,72,..71) if and
only if

1
G-+ i

r—zmo—n+u b ta 2l

1
Z (B+1) <1-p

Theorem 2. Fori € {1,2,3...1},let f; € T. Then, f; € LAG(A, B, 4, 71,72,...71,4) if and only

if
S . Mmoo Ty(j+n)

! Ez[]]ﬂ[]_l]q{)‘([]]q_l) H1 it o
YrB+) | —= : <1-y,
= . . m- T, (j+n)
= 1= Ezmq{A(mq_l) 1} i

where >0, -1 < u <1

Proof. Using Lemma 8 and the method used to prove Theorem 1, we arrive at Theorem 2. [

(z) and

We now demonstrate some characteristics of the integral operators F, "

/\ 71 72 N
G?T%’,q“rz,..,“n (z) for the families R(6,9), C(6,9), RA(B, 1, q), and CA(B, 1, q).

3 (DR;”; f(2)

Theorem 3. Let f; € T and BRI < M. If fi € RA(Bj, i, q), then A (z) €
g

Ar1,72,..

D(6'), where
1
6 =14 ) viui(BiM;+1), z€ U,
i=1
where
Yi€R, v >0,i€{1,23...1}.
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Proof. Asshown in (9), F)Tfl ’Llrz ,, € T.Upon differentiating F;\”AZ ,{irz » (z) as shown in (9),
we obtain » l DRT’;f(z) ,
3 (PA,WZ’___% (z)) - H —a4— ). (16)

Taking the logarithmic differentiation of (16) and multiplying by z, we obtain

(e @) (a S;Rf{@ _1),

- 1

mn,q 4
8‘7 (F/\r’hﬁz,,ﬂz (Z>) =1

or, equivalently,

1+

20 (szmz,.m (Z)) l ,(Zaq (D Ryaf (Z)) _1> (17)

=1+).7
m,n,q 4 DRm,n
9 (F/\m,vz,,m (Z)) i=1 A4 1)

By taking a real part from either side of (17), we obtain

292 (F"ff"lfff . l(z)) ! 29 (DRm;" f(z))
s - (e )

A2,
- 1+Zl:'y- zaq(DR;\",’;f(z)) »
- 5" DRIf(2)
Since f; € RA(B, i, q), we deduce that
m,n,g /
(R (2) L | s (DRY A9)
Rel 1+ mn,g < 1+ Z Yili 51, DRm/nf(Z) 1
% (F)\/"n,vzpm (2 )) i=1 o
L f=y (DR S()) |
q
< L Lmeb + 3 rimibi
i:zl iHiPi DRT:;f(Z) l; iHiPi

I
< 14 Y yimi(BiM; +1).
i1

Furthermore,

I
X;'Yil/‘i(.giMi +1)>0, and F7 . (z) € D),
i=

where
i

§ =1+ Y yip(BiM;+1), z € U
i=1

O

For g — 1—, we obtain the result proven in [44].
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(DRI £(2))

COl‘Ollary 2. Let ’)/l E R, ,)/l > 0,1 E {1,2,3 l} ﬁ 6 Tand W

fi € RA(Bi, 1), then F/T;zl . 5, (2) € D(8'), where

1
0 =1+ Z'Yiﬂi(ﬁiMi +1),ze U
i=1

The following is a corollary of Theorem 3 under the assumptions that!/ =1, 4
(51 = (5, and fl = f

9f(2)
)

< M. If f € RA(B,11,q), then Oj(f(tt))vdq(t) €

where ,
6 =14+yu(pM+1),

andy € R,v>0,z € U.

Theorem 4. Let f; € T. Then, F/'\n;’ "Q W( z) € D(8'), where

1
6 =1+)Y 7i(6-1),zelU
i=1

and
v €R,6;>1,v7,>0,i¢€ {1,2,3...1}.

Proof. From (17), we have

Re (1+ i (qu””’ (z>)) = 1+ i’riRe( <DRm e ))) - i%

mmn
& (Rt (@) DRI ) &

I I I
< 1Y vidi— ) vi=1+) %6
ia ia i=1

l /
Since &; > 1, evidently, ¥ 7;(6; — 1) > 0; hence, F, " (z) € D(6), where
i=1

?w “rz m

5_1+Z'y, —1),ze U
i=1

O
The following is a corollary of Theorem 4 under the assumptions that! =1, 4

51 = 5, and fl = f

FE0N? /
Corollary 4. Let f € R(5). Then, f(7> dg(t) € D(6 ), where
0

§=1+7(6-1)

and
6>1,v>0,zel.

< Mllf

:’)/’

D),

:’)/,
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Theorem 5. Let f; € D(6;). Then, G/’C’;ll’q,n ., (2) € D(5'), where

i
:1+Z’)/,'((5,‘—1),Z€u
i=1

and
v >0,i€{1,2,3,...,1}, 6 > 1.

Proof. From the definition of Gj\n;llqn ,,(2) given by (10), we have

202(GYT - (z) ! 20y ( DR fi(z) I
Re (1 i ‘7( AY1,72,..71 ) ) - 1+ 2 'YiRe( ( Aq lz) ) _ Z%‘

m,n,q 4 DR™"™ £ ‘
g (G/\m,“rz/.m (z)) i=1 A fi i=1

I I I
< A+Y 16— Y vi=14+) 76— 1).
i=1 i=1 i=1

l

Since §; > 1, it seems to reason that }_ ;(d; — 1) > 0 and that G;\n%’q“rz " (z) € D(J),
i=1 711,772,

where
i

§=1+Y 7(6-1), ze U
i=1

O

The following is a corollary of Theorem 5 under the assumptions I =1,y = 7,01 =9,
and f; = f.
z

Corollary 5. Let f € D(6). Then, f(f/(t))wdq(t) € D(6), where
0

5 =1+7(6-1)

and
¥>0,0>1
Theorem 6. Let f; € DA(B;, pi,q) and M < M;. Then, G, 71 (z) € D(S)
! v 9 (DRKI/};JI(ZD ! 7 A, ’
where l
& =1+Y vipui(BiM; +1)
i=1
and

Y ER, v >0,zelU, ic{l,23.1}.

. . . o ey m,mn,q . .
Proof. The following is derived from the definition of G A (10):
zaé (G;&’;l’qn " (z)) I zag (DR)"f;f(z))
Re 1+ TS < Y v p
9 (G)L/Ylﬁz,‘..% (Z)) i=1 9 (DR)\:LI f(Z))

Bi (1 + i <DRT’W(Z)) + 1) +1

3y (DR} (2))

!
< Z Yiki
i=1
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! z02( DR f(z) !
q A,
< 14) mippi| 1+ ( m: ) + Y vipi+1
i=1 9 (DRA,'qf(z)) i=1
1
< Y IBi(1+ M) + 1 yipi + 1.
i=1
Because l
Y [Bi(1+ M) + 1]yip; >0,
i=1
we draw the following conclusion
m,n,q !
GAm,vz,ﬂ: (2) € D(3),
where l
5 =1+ Y [Bi(1+ M) +1]ym, z € U.
i=1
O
For g — 1—, we obtain the result proven in [44].
. (DR ()
Corollary 6 ([44]). Lety; € R,v; > 0,i € {1,2,3...1}, f; € DA(Bi, i), and ﬁ <
DRy f(2)

M;. Then, Gy . (2) € D(5'), where

!
6 =1+)Y yipi(BiMi+1), ze U.
i=1
The following is a corollary of Theorem 6 under the assumptions I = 1, y1 = 7,
M1 =1, and fl = f

Corollary 7. Let f € DA(B, 1, q) and

f(z)

z
a,,f(z)’ < M, where M is fixed. Then, g’(f/(t))vdq(t) €

D(6'), where
§ =1+ yupl+M)+1]

and
YyeER, ¥y>0,zel.

Subordination Results:
In this paper, we generalize Lemmas 1 and 2 to the operator DRT'; f(z).

Theorem 7. Assuming h is both convex and univalent, ¢ # 0, and

A0-9a  2 203h(2)
R{ M.c +W h<>+<1+aqh(z)>}>0

q q
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If the differential subordination condition forf € T holds, then

DR %" f(2) " DRy f(2)
7 * | DRI (2)

A
< (1 =¢)h(z) +ch?(z) + gL)\]E’zaqh(z) (18)

then,
DR £(2)
Aq
———— < h(z), u.
DR)"C;f(z) < h(z), z €
Proof. Consider "
DR+ £ (2)
Ag
= —=,z€U. 19
PE) = Dy (19)
We achieved

ap(z)  DRUf(z) | (DRYY f(2))a, (DRI F(2)) — DRYM f(2)9 (DR £(2))
pE  DRIIV() (DR} £(2))°
9 (DR} f(2))  3y(DR} " f(2))

DR} () DR f(2)

Thus,
sagp(z)  2(DRI>'F(2) 20 (DRYf(2))

T in i, : (20)
p(z) DR/\;L f(z) DR/\,q f(z)
By using (8) in (20), we obtain

Dip(x) q(DRH)q(l[M>

p(z) (Al DRT;L”f(z) [A] q
qA(DRT;L"f z>) L (1[%7)
(Al \ DRY/f(2) (Al )

[Aly (204p(2) DRT,f’"f (=)
(56 (M "

 \ p(z)

DRYf(2) [, (20(2) ¢
o (e o)
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We deduce from (8) that
DRT;L” f(2) DR;”;Z'” f(2)
DR} f(2) {gDRK{;L" f(z) e
_ ol M (2ap@) gt )
- P( ){ q,\ ( P(Z) +[A]qp( )>+1 Q}
G[A]

(1-¢)p(z) +cp*(z) + 7 120,p(2).

Therefore, the differential subordination in (18) becomes

A
(1—¢)p(2) +cp*(z) + g;A]qzaqp(Z)

< (1=¢)h(z) +ch?(z) + gEI/\A]qzaqp(z).

Using Lemma 6, we obtain

m+1,n
DRUAD)
DR]7F(z)
where § is the best dominant. O

For g — 1—, we obtain the result proven in [44].

Corollary 8 ([44]). Let h be both convex and univalent, ¢ # 0, and

(1-¢) 2 2’ (2)
R —h 1 0.
e{ e TAMEE\M
If f € T satisfies the differential subordination
DRK[—‘FLnf(Z) DRKI-‘FZ,?Zf(Z) .
DRY"f(z) gDR’A”“'” f(z) ¢
< (1=Q)h(z) + ¢l (2) + Azl (2),

then

DRI £(2)
A
DRYF(z) < h(z), ze U.
Theorem 8. For h(0) # 0, ¢ # 0. Let h be univalent in U and za]jé()z) be both univalent and

starlike in U. If the differential subordination condition for f € T holds, then
DR}I*"f(z)  DRYIf(z)
DR} M £ () ¢ DR f(z)
(Al z94h(z)

q/\ ]’Z(Z) 1- G/ (21)
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then
zg‘lDR;\”;l’”f(z)

(DRY /)

where the best dominant function is h.

<h(z),zel, (22)

Proof. Let ) "
2¢~IDRY T f(2)
p(z) = A (23)
(DRYf(2)

which, when differentiated, yields

22(y = 1) (DRI f(2)) + 26710, (DRI £(2) )

dgp(z) =
(DRY ()"
gzgfl (DRKI,,;H,nf(Z)> aq (DRT]’;_]“(Z))
(DRyzf()) (DREF))
Therefore,
26-2(6=1) (DR V' £(2) ) +2¢ 10y (DRY ' f(2))
DR™" f(z))° (DR ()
z0gp(z) by f(z2) a
P 2 'DRY " f(2) e (DRY M ()9 (DRYF)
(DRYf(2)) (DRI f(2) )
20, ( DRIV £(2) 20, ( DRY f(z)
= (c-1)+ o e )—g ol i )
DR} f(z) DRy f(z)
We deduce from (8) that

z0p(z) B i DRKZ,I;Z'nf(Z) q)‘< [/\]q>

p(z) (€ 1)+[)\]q<DRm,;rl'”f(z) Al ! gt
g (DR w( _wq>
gwq( DRm,;ﬂz) T

- q DRm+2n q)\ DRm+1 nf(Z)
M, DR’““" T, DR’””f()

Lt []qq“q c—1)(q" -~ A,)
(A,
g [DPRL"f(2) g (PR Vf(2)
- ()< i
L=
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which corresponds to

DRY™"f(z)  DRYI'f(z) (Al z9,p(2)
DRI DRETE e

According to hypothesis (21), we have

z0,p(z)  z94h(z)
pE G

By using Lemma 5, we obtain
zg_lDRT;;l’”f(z)
c
CE0)

where / is the best dominant. O

=< h(z),

For g — 1—, we obtain the result proven in [44].

Corollary 9 ([44]). For h(0) # 0, ¢ # 0. Let h be univalent in U, and ZZ(g) be univalent and

starlike in U. The differential subordination condition is satisfied if and only if f € T

DR}™"f(z) DR}V f(z)

DRI f(z)  © DRITf(z)

zH (2)
h(z)

A

+1—g,
then »
z¢7IDRY TV (z)
(DR} f(2))*

where the best dominant function is h.

< h(z), ze U,

4. Conclusions

This study presents a modification of previous work that used quantum calculus
to better understand geometric function theory. In this study, first of all, in Section 1,
we defined the convolution operator DRT’{;1 inspired by the g-Saldgean operator and the

Ruscheweyh g-differential operator. Then, using the operator DR}"", two new integral

operators, F;‘";l ZYZ " (z) and G;"f;lqw " (z), were introduced. Some new subclasses of ana-
lytic functions were introduced by means of these operators. In Section 2, four innovative
lemmas that are connected to the new integral operators and were used in the justifications
of the first findings in Sections 3 were proven. In Section 3, we first determined the sufficient
conditions in Theorems 1 and 2 for the functions from class T to belong to classes LAF and
LAG. Next, in Theorems 3-6, we proved some new properties of the integral operators

F/’C%@z,ﬂz (z) and G;tﬂ{,q’rzwm (z) for newly defined classes R(d,q), C(d,q), RA(B, 1, q), and

CA(B, 1, q). We examined Theorems 7 and 8 by presenting the best dominants for certain
differential subordinations. The results of this article are the generalizations discussed
earlier in in [44].

Many new subclasses of analytic, meromorphic, and p-valent functions can be defined
by utilizing the differential and integral operators introduced in this article, and a number
of useful properties can be investigated for these classes.

Differential operators have allowed us to study differential equations from the per-
spective of operator theory and functional analysis. The use of differential operators allows
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for the solution of differential equations. In the future, research might be conducted to
determine whether PDEs can be solved using these operators. These novel operators may
be studied for potential applications in the applied sciences and other practical sciences,
where similar results have been reported for numerous differential operators.
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