Laplace-Residual Power Series Method for Solving Time-Fractional Reaction–Diffusion Model
Abstract
:1. Introduction
2. C-FD Operator, LT, and Fractional Expansions
- 1.
- .
- 2.
- 3.
- .
- 4.
- .
- 1.
- .
- 2.
- .
- 3.
- .
- 1.
- .
- 2.
- ,
3. The L-RPSM for Solving TFRDE
4. Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar]
- Almeida, R.; Tavares, D.; Torres, D. The Variable-Order Fractional Calculus of Variations; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012. [Google Scholar]
- Duan, J.-S.; Rach, R.; Baleanu, D.; Wazwaz, A.-M. A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Fract. Calc. 2012, 3, 73–99. [Google Scholar]
- Magin, R.; Feng, X.; Baleanu, D. Solving the fractional order Bloch equation. Concepts Magn. Reson. Part A Educ. J. 2009, 34, 16–23. [Google Scholar] [CrossRef]
- Baleanu, D. New applications of fractional variational principles. Rep. Math. Phys. 2008, 61, 199–206. [Google Scholar] [CrossRef]
- Magin, R.; Abdullah, O.; Baleanu, D.; Zhou, X. Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J. Magn. Reson. 2008, 190, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Bera, R. Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Appl. Math. Comput. 2005, 168, 398–410. [Google Scholar] [CrossRef]
- Sabatier, J.; Agrawal, O.; Machado, J. Advances in Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bhrawy, A.; Zaky, M. A fractional-order Jacobi Tau method for a class of time-fractional PDEs with variable coefficients. Math. Meth. Appl. Sci. 2016, 39, 1765–1779. [Google Scholar] [CrossRef]
- Saadatmandi, A.; Dehghan, M.; Azizi, M.-R. The Sinc–Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4125–4136. [Google Scholar] [CrossRef]
- Hafez, R.; Zaky, M.; Hendy, A. A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi- dimensional space–time-fractional advection– diffusion–reaction equations with nonsmooth solutions. Math. Comput. Simul. 2021, 190, 678–690. [Google Scholar] [CrossRef]
- Momani, S. Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. Math. Comput. 2005, 165, 459–472. [Google Scholar] [CrossRef]
- Molliq, Y.; Noorani, M.; Hashim, I. Variational iteration method for fractional heat-and wave-like equations. Nonlinear Anal. Real World Appl. 2009, 10, 1854–1869. [Google Scholar] [CrossRef]
- Loyinmi, A.; Akinfe, T. Exact solutions to the family of Fisher’s reaction–diffusion equation using Elzaki homotopy transformation perturbation method. Eng. Rep. 2020, 2, 12084. [Google Scholar] [CrossRef] [Green Version]
- El-Ajou, A.; Oqielat, M.; Al-Zhour, Z.; Momani, S. A class of linear non-homogenous higher order matrix fractional differential equations: Analytical solutions and new technique. Fract. Calc. Appl. Anal. 2020, 23, 356–377. [Google Scholar] [CrossRef]
- Eriqat, T.; El-Ajou, A.; Oqielat, M.; Al-Zhour, Z.; Momani, S. A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos Solit. Fractals 2020, 138, 109957. [Google Scholar] [CrossRef]
- El-Ajou, A. Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 2021, 136, 229. [Google Scholar] [CrossRef]
- Oqielat, M.; Eriqat, T.; Al-Zhour, Z.; Ogilat, O.; El-Ajou, A.; Hashim, I. Construction of fractional series solutions to nonlinear fractional reaction–diffusion for bacteria growth model via Laplace residual power series method. Int. J. Dyn. Control 2022, 1–8. [Google Scholar] [CrossRef]
- Eriqat, T.; Oqielat, M.; Al-Zhour, Z.; El-Ajou, A.; Bataineh, A. Revisited Fisher’s equation and logistic system model: A new fractional approach and some modifications. Int. J. Dyn. Control 2022, 1–10. [Google Scholar] [CrossRef]
- Oqielat, M.; Eriqat, T.; Ogilat, O.; Odibat, Z.; Al-Zhour, Z.; Hashim, I. Approximate solutions of fuzzy fractional population dynamics model. Eur. Phys. J. Plus 2022, 137, 1–16. [Google Scholar] [CrossRef]
- Oqielat, M.; El-Ajou, A.; Al-Zhour, Z.; Eriqat, T.; Al-Smadi, M. A new approach to solving Fuzzy quadratic Riccati differential equations. Int. J. Fuzzy Log. Intell. Syst. 2022, 22, 23–47. [Google Scholar] [CrossRef]
- Saadeh, R.; Burqan, A.; El-Ajou, A. Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function. Alex. Eng. J. 2022, 61, 10551–10562. [Google Scholar] [CrossRef]
- Eriqat, T.; Oqielat, M.; Al-Zhour, Z.; Khammash, G.; El-Ajou, A.; Alrabaiah, H. Exact and numerical solutions of higher-order fractional partial differential equations: A new analytical method and some applications. Pramana J. Phys. 2022, 96, 1–17. [Google Scholar] [CrossRef]
- Wazwaz, A.-M.; Gorguis, A. An analytic study of Fisher’s equation by using Adomian decomposition method. Appl. Math. Comput. 2004, 154, 609–620. [Google Scholar] [CrossRef]
- Khan, N.; Khan, N.-U.; Ara, A.; Jamil, M. Approximate analytical solutions of fractional reaction–diffusion equations. J. King Saud Univ. Sci. 2012, 24, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Tchier, F.; Inc, M.; Korpinar, Z.; Baleanu, D. Solutions of the time-fractional reaction–diffusion equations with residual power series method. Adv. Mech. Eng. 2016, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Alqhtani, M.; Owolabi, K.; Saad, K.; Pindza, E. Efficient numerical techniques for computing the Riesz fractional-order reaction–diffusion models arising in biology. Chaos Solit. Fractals 2022, 161, 112394. [Google Scholar] [CrossRef]
- Coronel-Escamilla, A.; Gómez-Aguilar, J.; Torres, L.; Escobar-Jiménez, R.F. A numerical solution for a variable-order reaction–diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A 2018, 491, 406–424. [Google Scholar] [CrossRef]
- Owolabi, K. Numerical simulation of fractional-order reaction–diffusion equations with the Riesz and Caputo derivatives. Neural Comput. Appl. 2020, 32, 4093–4104. [Google Scholar] [CrossRef]
- Matoog, R.T.; Salas, A.H.; Alharbey, R.A.; El-Tantawy, S.A. Rational solutions to the cylindrical nonlinear Schrödinger equation: Rogue waves, breathers, and Jacobi breathers solutions. J. Ocean. Eng. Sci. 2022, 13, 19. [Google Scholar] [CrossRef]
- Hou, E.; Hussain, A.; Rehman, A.; Baleanu, D.; Nadeem, S.; Matoog, R.T.; Khan, I.; Sherif, E.S.M. Entropy generation and induced magnetic field in pseudoplastic nanofluid flow near a stagnant point. Sci. Rep. 2021, 11, 23736. [Google Scholar] [CrossRef]
- Trikha, P.; Mahmoud, E.E.; Jahanzaib, L.S.; Matoog, R.T.; Abdel-Aty, M. Fractional order biological snap oscillator: Analysis and control. Chaos Solitons Fractals 2021, 145, 110763. [Google Scholar] [CrossRef]
- Mahmoud, E.E.; Trikha, P.; Jahanzaib, L.S.; Matoog, R.T. Chaos control and Penta-compound combination anti-synchronization on a novel fractional chaotic system with analysis and application. Results Phys. 2021, 24, 104130. [Google Scholar] [CrossRef]
- Alyousef, H.A.; Salas, A.H.; Matoog, R.T.; El-Tantawy, S.A. On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma. Phys. Fluids 2022, 34, 103105. [Google Scholar] [CrossRef]
- Hanna, J.; Rowland, J. Fourier Series, Transforms, and Boundary Value Problems; John Wiley and Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
t | x | k = 17 | Con.Err | k = 17 | Con.Err | k = 17 | Con.Err |
---|---|---|---|---|---|---|---|
0.25 | 0.3 | 0.11556 | |||||
0.6 | 0.46225 | ||||||
0.9 | 1.04006 | ||||||
0.50 | 0.3 | 0.14839 | |||||
0.6 | 0.59354 | ||||||
0.9 | 1.33546 | ||||||
0.75 | 0.3 | 0.19053 | |||||
0.6 | 0.76212 | ||||||
0.9 | 1.71477 | ||||||
1.00 | 0.3 | 0.24465 | |||||
0.6 | 0.97858 | ||||||
0.9 | 2.20181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oqielat, M.N.; Eriqat, T.; Ogilat, O.; El-Ajou, A.; Alhazmi, S.E.; Al-Omari, S. Laplace-Residual Power Series Method for Solving Time-Fractional Reaction–Diffusion Model. Fractal Fract. 2023, 7, 309. https://doi.org/10.3390/fractalfract7040309
Oqielat MN, Eriqat T, Ogilat O, El-Ajou A, Alhazmi SE, Al-Omari S. Laplace-Residual Power Series Method for Solving Time-Fractional Reaction–Diffusion Model. Fractal and Fractional. 2023; 7(4):309. https://doi.org/10.3390/fractalfract7040309
Chicago/Turabian StyleOqielat, Moa’ath N., Tareq Eriqat, Osama Ogilat, Ahmad El-Ajou, Sharifah E. Alhazmi, and Shrideh Al-Omari. 2023. "Laplace-Residual Power Series Method for Solving Time-Fractional Reaction–Diffusion Model" Fractal and Fractional 7, no. 4: 309. https://doi.org/10.3390/fractalfract7040309
APA StyleOqielat, M. N., Eriqat, T., Ogilat, O., El-Ajou, A., Alhazmi, S. E., & Al-Omari, S. (2023). Laplace-Residual Power Series Method for Solving Time-Fractional Reaction–Diffusion Model. Fractal and Fractional, 7(4), 309. https://doi.org/10.3390/fractalfract7040309