Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials
Abstract
:1. Introduction
- A novel operational matrix of fractional order is derived in the sense of the Liouville–Caputo fractional derivative for the MVP.
- The technique is a combination of the collocation technique with the Tau method.
- The method converts the nonlinear fractional differential equation into a system of algebraic equations that are solved easily.
- The convergence analysis is performed to prove the error bound for the technique.
- The proposed technique is adapted for solving various examples with the application including the Bagley–Torvik and Bratu models.
- The acquired results prove that the technique is better than the other methods in terms of error and computational cost.
- The proposed algorithm can be extended to more complex problems having real-life applications.
2. Preliminaries and Notations
3. Morgan–Voyce Polynomials
3.1. Morgan–Voyce Polynomials Operational Matrices of Derivatives
3.2. Polynomials Integer-Order Operational Matrix of Derivatives
3.3. Polynomials Fractional-Order Operational Matrix of Derivatives
4. Proposed Methodology and Convergence Analysis
4.1. Proposed Methodology
4.2. Convergence of Morgan–Voyce Bases
5. Numerical Simulations
- Case I: and . The analytical solution is .
- Case II: and . The precise solution .
- Case III: and . The true solution is ,where . Here, we have .
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, K. Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel. Fractal Fract. 2022, 6, 469. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y. Exponential Euler scheme of multi–delay Caputo–Fabrizio fractional–order differential equations. Appl. Math. Lett. 2022, 124, 107709. [Google Scholar] [CrossRef]
- Yu, F. Integrable coupling system of fractional soliton equation hierarchy. Phys. Lett. A 2009, 373, 3730–3733. [Google Scholar] [CrossRef]
- Bonilla, B.; Rivero, M.; Trujillo, J.J. On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 2007, 187, 68–78. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248. [Google Scholar] [CrossRef] [Green Version]
- Momani, S.; Ibrahim, R.W. On a fractional integral equation of periodic functions involving Weyl-Riesz operator in Banach algebras. J. Math. Anal. Appl. 2008, 339, 1210–1219. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 2009, 228, 3137–3153. [Google Scholar] [CrossRef] [Green Version]
- Bonyah, E.; Hammouch, Z.; Koksal, M.E. Mathematical modeling of coronavirus dynamics with conformable derivative in Liouville-Caputo sense. J. Math. 2022, 2022, 353343. [Google Scholar] [CrossRef]
- Saraswat, A.K.; Goyal, M. Numerical simulation of time–dependent influenza model with Atangana–Baleanu non–integer order derivative in Liouville–Caputo sense. Pramana 2022, 96, 104. [Google Scholar] [CrossRef]
- Gao, G.H.; Sun, Z.Z.; Zhang, H.W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Günerhan, H.; Dutta, H.; Dokuyucu, M.A.; Adel, W. Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators. Chaos Solit. Fract 2020, 139, 110053. [Google Scholar] [CrossRef]
- Han, C.; Wang, Y.L. Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative. Fractal Fract. 2022, 6, 207. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Izadi, M.; Parsamanesh, M.; Adel, W. Numerical and stability investigations of the waste plastic management model in the ocean system. Mathematics 2022, 10, 4601. [Google Scholar] [CrossRef]
- Adel, W. A numerical technique for solving a class of fourth-order singular singularly perturbed and Emden-Fowler problems arising in astrophysics. Int. J. Appl. Comput. Math. 2022, 8, 220. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşı, Ş.; Adel, W. A new Chelyshkov matrix method to solve linear and nonlinear fractional delay differential equations with error analysis. Math. Sci. 2022. [Google Scholar] [CrossRef]
- El-Gamel, M.; Mohamed, N.; Adel, W. Numerical study of a nonlinear high order boundary value problems using Genocchi collocation technique. Int. J. Appl. Comput. Math. 2022, 8, 143. [Google Scholar] [CrossRef]
- De Boor, C. On calculating with B-splines. J. Approx. Theory 1972, 6, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Goyal, K. An adaptive wavelet optimized finite difference B-spline polynomial chaos method for random partial differential equations. Appl. Math. Comput. 2022, 415, 126738. [Google Scholar] [CrossRef]
- Zahra, W.K.; Ouf, W.A.; El-Azab, M.S. A robust uniform B-spline collocation method for solving the generalized PHI-four equation. Appl. Appl. Math. 2016, 11, 24. [Google Scholar]
- Zahra, W.K.; Ouf, W.A.; El-Azab, M.S. Cubic B-spline collocation algorithm for the numerical solution of Newell Whitehead Segel type equations. Electron. J. Math. Anal. Appl. 2014, 2, 81–100. [Google Scholar]
- Ricker, N. Wavelet functions and their polynomials. Geophysics 1944, 9, 314–323. [Google Scholar] [CrossRef]
- Alqhtani, M.; Khader, M.M.; Saad, K.M. Numerical simulation for a high-dimensional chaotic Lorenz system based on Gegenbauer wavelet polynomials. Mathematics 2023, 11, 472. [Google Scholar] [CrossRef]
- Mason, J.; Handscomb, D. Chebyshev Polynomials; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Atta, A.G.; Abd-Elhameed, W.M.; Youssri, Y.H. Shifted fifth-kind Chebyshev polynomials Galerkin-based procedure for treating fractional diffusion-wave equation. Int. J. Mod. Phys. C 2022, 33, 2250102. [Google Scholar] [CrossRef]
- Szeg, G. Orthogonal Polynomials; American Mathematical Soc.: Providence, RI, USA, 1939; Volume 23. [Google Scholar]
- Fathy, M.; El-Gamel, M.; El-Azab, M.S. Legendre-Galerkin method for the linear Fredholm integro-differential equations. Appl. Math. Comput. 2014, 243, 789–800. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Moussa, H. Pseudo-spectral matrices as a numerical tool for dealing BVPs, based on Legendre polynomials’ derivatives. Alex. Eng. J. 2023, 66, 301–313. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, B.; Shaba, T.G.; Ro, J.S.; Araci, S.; Khan, M.G. Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent functions. Fractal Fract. 2022, 6, 420. [Google Scholar] [CrossRef]
- Wanas, A.K.; Lupaş, A.A. Applications of Laguerre polynomials on a new family of bi-prestarlike functions. Symmetry 2022, 14, 645. [Google Scholar] [CrossRef]
- Swamy, M.N.S. Further properties of Morgan-Voyce polynomials. Fibonacci Quart. 1968, 6, 167–175. [Google Scholar]
- Türkyilmaz, B.; Gürbüz, B.; Sezer, M. Morgan-Voyce polynomial approach for solution of high-order linear differential-difference equations with residual error estimation. Düzce Unive. J. Sci. Tech. 2016, 4, 252–263. [Google Scholar]
- Tarakci, M.; Özel, M.; Sezer, M. Solution of nonlinear ordinary differential equations with quadratic and cubic terms by Morgan–Voyce matrix-collocation method. Turk. J. Math. 2020, 44, 906–918. [Google Scholar] [CrossRef]
- Özel, M.; Kurkcu, O.K.; Sezer, M. Morgan-Voyce matrix method for generalized functional integro-differential equations of Volterra-type. J. Sci. Arts 2019, 19, 295–310. [Google Scholar]
- Izadi, M.; Yüzbaşı, Ş.; Adel, W. Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model. Physica A 2022, 600, 127558. [Google Scholar] [CrossRef]
- Izadi, M.; Zeidan, D. A convergent hybrid numerical scheme for a class of nonlinear diffusion equations. Comp. Appl. Math. 2022, 41, 318. [Google Scholar] [CrossRef]
- Kashiem, B.E. Morgan-Voyce Approach for Solution Bratu Problems. Emir. J. Eng. Res. 2021, 26, 3. [Google Scholar]
- Torvik, P.J.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Guirao, J.L.; Sabir, Z.; Raja, M.A.Z.; Baleanu, D. Design of neuro-swarming computational solver for the fractional Bagley–Torvik mathematical model. Eur. Phys. J. Plus 2022, 137, 245. [Google Scholar] [CrossRef]
- Shi, L.; Tayebi, S.; Arqub, O.A.; Osman, M.S.; Agarwal, P.; Mahamoud, W.; Abdel-Aty, M.; Alhodaly, M. The novel cubic B-spline method for fractional Painlevé and Bagley–Trovik equations in the Caputo, Caputo–Fabrizio, and conformable fractional sense. Alex. Eng. J. 2023, 65, 413–426. [Google Scholar] [CrossRef]
- Deshi, A.B.; Gudodagi, G.A. Numerical solution of Bagley–Torvik, nonlinear and higher order fractional differential equations using Haar wavelet. SeMA J. 2022, 79, 663–675. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Sadat, R.; Ahmed, K.S.; Ali, M.R.; Al-Kouz, W. Fractional Meyer neural network procedures optimized by the genetic algorithm to solve the Bagley–Torvik model. J. Appl. Anal. Comput. 2022, 12, 2458–2474. [Google Scholar] [CrossRef]
- Yüzbaşı, Ş.; Yıldırım, G. Numerical solutions of the Bagley–Torvik equation by using generalized functions with fractional powers of Laguerre polynomials. Int. J. Nonlinear Sci. Numer. Simul. 2022. [Google Scholar] [CrossRef]
- Ding, Q.; Wong, P.J. A higher order numerical scheme for solving fractional Bagley–Torvik equation. Math. Methods Appl. Sci. 2022, 45, 1241–1258. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşı, Ş.; Cattani, C. Approximating solutions to fractional-order Bagley–Torvik equation via generalized Bessel polynomial on large domains. Ric. Mat. 2021, 1–27. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Abd Elaziz El-Sayed, A.; Boulaaras, S.; Sweilam, N.H. Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method. Math. Methods Appl. Sci. 2021; Early View. [Google Scholar] [CrossRef]
- Izadi, M.; Negar, M.R. Local discontinuous Galerkin approximations to fractional Bagley–Torvik equation. Math. Methods Appl. Sci. 2020, 43, 4798–4813. [Google Scholar] [CrossRef]
- Mekkaoui, T.; Hammouch, Z. Approximate analytical solutions to the Bagley–Torvik equation by the fractional iteration method. Ann. Univ. Craiova Math. Comput. 2012, 39, 251–256. [Google Scholar]
- Koundal, R.; Kumar, R.; Srivastava, K.; Baleanu, D. Lucas wavelet scheme for fractional Bagley–Torvik equations: Gauss–Jacobi approach. Int. J. Appl. Comput. Math. 2022, 8, 3. [Google Scholar] [CrossRef]
- Sakar, M.G.; Saldır, O.; Akgül, A. A novel technique for fractional Bagley–Torvik equation. Proc. Natl. Acad. Sci. USA 2019, 89, 539–545. [Google Scholar] [CrossRef]
- Gharechahi, R.; Arabameri, M.; Bisheh-Niasar, M. Numerical solution of fractional Bratu’s initial value problem using compact finite difference scheme. Progr. Fract. Differ. Appl. 2021, 7, 103–115. [Google Scholar]
- Babolian, E.; Javadi, S.; Moradi, E. RKM for solving Bratu-type differential equations of fractional order. Math. Methods Appl. Sci. 2016, 39, 1548–1557. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. Generalized Bessel quasilinearlization technique applied to Bratu and Lane–Emden type equations of arbitrary order. Fractal Fract. 2021, 5, 179. [Google Scholar] [CrossRef]
Absolute Errors | Absolute Errors | ||
---|---|---|---|
0.0 | 1.0 | ||
0.1 | 1.1 | ||
0.2 | 1.2 | ||
0.3 | 1.3 | ||
0.4 | 1.4 | ||
0.5 | 1.5 | ||
0.6 | 1.6 | ||
0.7 | 1.7 | ||
0.8 | 1.8 | ||
0.9 | 1.9 | ||
1.0 | − | 2.0 |
Case I | Case II | Case III | ||||
---|---|---|---|---|---|---|
t | LDG [51] | MVOMM | LDG [51] | MVOMM | LDG [51] | MVOMM |
0.0 | − | − | − | |||
0.1 | ||||||
0.2 | ||||||
0.3 | ||||||
0.4 | ||||||
0.5 | ||||||
0.6 | ||||||
0.7 | ||||||
0.8 | ||||||
0.9 | ||||||
1.0 |
CFDM [55] | MVOMM | |||
---|---|---|---|---|
-Error | -Error | CPU Time (s) | ||
5 | 2 | |||
10 | 4 | |||
20 | 6 | |||
40 | 8 | |||
80 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Adel, W.; Izadi, M.; El-Sayed, A.A. Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials. Fractal Fract. 2023, 7, 301. https://doi.org/10.3390/fractalfract7040301
Srivastava HM, Adel W, Izadi M, El-Sayed AA. Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials. Fractal and Fractional. 2023; 7(4):301. https://doi.org/10.3390/fractalfract7040301
Chicago/Turabian StyleSrivastava, Hari Mohan, Waleed Adel, Mohammad Izadi, and Adel A. El-Sayed. 2023. "Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials" Fractal and Fractional 7, no. 4: 301. https://doi.org/10.3390/fractalfract7040301
APA StyleSrivastava, H. M., Adel, W., Izadi, M., & El-Sayed, A. A. (2023). Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials. Fractal and Fractional, 7(4), 301. https://doi.org/10.3390/fractalfract7040301