Certain Properties and Applications of Δh Hybrid Special Polynomials Associated with Appell Sequences
Abstract
:1. Introduction and Preliminaries
- (i)
- demonstrates the differential equation
- (ii)
- The explicit form of can be cast in the form as
- (iii)
- Moreover, the generating relation in exponential form for can be cast in the form
2. Three-Variable Hermite Based Appell Polynomials
3. Monomiality Principle
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Appell, P. Sur une classe de polynômes. Ann. Sci. École. Norm. Sup. 1880, 9, 119–144. [Google Scholar] [CrossRef] [Green Version]
- Hermite, C. Sur un nouveau dévelopment en séries de functions. Compt. Rend. Acad. Sci. Paris 1864, 58, 93–100. [Google Scholar]
- Araci, S.; Riyasat, M.; Wani, S.A. Subuhi Khan Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials. App. Math. Inf. Sci. 2017, 11, 1–11. [Google Scholar]
- Riyasat, M.; Wani, S.A.; Khan, S. On some classes of diffrential equations and associated integral equations for the Laguerre-Appell polynomials. Adv. Pure Appl. Math. 2017, 9, 185–194. [Google Scholar] [CrossRef]
- Wani, S.A.; Khan, S.; Naikoo, S. Differential and integral equations for the Laguerre-Gould-Hopper based Appell and related polynomials. Boletín Soc. Matemática Mex. 2019, 26, 617–646. [Google Scholar] [CrossRef]
- Wani, S.A.; Khan, S. Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials. Tbil. Math. J. 2019, 12, 93–104. [Google Scholar] [CrossRef]
- Jordan, C. Calculus of Finite Differences; Chelsea Publishing Company: New York, NY, USA, 1965. [Google Scholar]
- Costabile, F.A.; Longo, E. Δh Appell sequences and related interpolation problem. Numer. Algor. 2013, 63, 165–186. [Google Scholar] [CrossRef]
- Steffensen, J.F. The poweriod, an extension of the mathematical notion of power. Acta Math. 1941, 73, 333–366. [Google Scholar] [CrossRef]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. Adv. Spec. Funct. Appl. 1999, 147–164. [Google Scholar]
- Andrews, L.C. Special Functions for Engineers and Applied Mathematicians; Macmillan Publishing Company: New York, NY, USA, 1985. [Google Scholar]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Bretti, G.; Cesarano, C.; Ricci, P.E. Laguerre-type exponentials and generalized Appell polynomials. Comput. Math. Appl. 2004, 48, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, C.S. Notes on degenerate tangent polynomials. Glob. J. Pure Appl. Math. 2015, 11, 3631–3637. [Google Scholar]
- Hwang, K.W.; Ryoo, C.S. Differential equations associated with two variable degenerate Hermite polynomials. Mathematics 2020, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Nikan, O.; Avazzadeh, A.Z. Coupling of the Crank–Nicolson scheme and localized meshless technique for viscoelastic wave model in fluid flow. J. Comput. Appl. Math. 2021, 398, 113695. [Google Scholar] [CrossRef]
- Tariqa, M.; Ahmad, H.; Sahoo, S.K.; Aljoufi, L.S.; Awan, S.K. A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions. J. Math. Comput. Sci. 2022, 26, 330–348. [Google Scholar] [CrossRef]
- Khan, W.A.; Alatawi, M.S. A note on partially degenerate Hermite-Bernoulli polynomials of the first kind. J. Math. Comput. Sci. 2023, 30, 255–271. [Google Scholar] [CrossRef]
- Singh, V.; Khan, M.A.; Khan, A.K.; Nisar, S.K. A note on modified Hermite matrix polynomials. J. Math. Comput. Sci. 2021, 22, 333–346. [Google Scholar] [CrossRef]
- Carlitz, L. Eulerian numbers and polynomials. Math. Mag. 1959, 32, 247–260. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyusof, R.; Wani, S.A. Certain Properties and Applications of Δh Hybrid Special Polynomials Associated with Appell Sequences. Fractal Fract. 2023, 7, 233. https://doi.org/10.3390/fractalfract7030233
Alyusof R, Wani SA. Certain Properties and Applications of Δh Hybrid Special Polynomials Associated with Appell Sequences. Fractal and Fractional. 2023; 7(3):233. https://doi.org/10.3390/fractalfract7030233
Chicago/Turabian StyleAlyusof, Rabab, and Shahid Ahmmad Wani. 2023. "Certain Properties and Applications of Δh Hybrid Special Polynomials Associated with Appell Sequences" Fractal and Fractional 7, no. 3: 233. https://doi.org/10.3390/fractalfract7030233
APA StyleAlyusof, R., & Wani, S. A. (2023). Certain Properties and Applications of Δh Hybrid Special Polynomials Associated with Appell Sequences. Fractal and Fractional, 7(3), 233. https://doi.org/10.3390/fractalfract7030233