From Stochastic to Rough Volatility: A New Deep Learning Perspective on Hedging
Abstract
:1. Introduction
1.1. Motivation
1.2. Aim of This Paper
1.3. Main Findings
1.4. Contributions of This Paper
2. Setup and Notation
2.1. The Stochastic Volatility Model
- denotes the variance mean-reversion speed.
- denotes the long-term variance.
- denotes the volatility of the variance process.
- denotes the initial variance.
- denotes the correlation coefficient of the two correlated Wiener processes .
2.2. The Rough Volatility Model
- is the Hurst parameter, which takes a value around .
- is the level of the volatility in the variance.
- is the initial variance.
- denotes the correlation coefficient of the Wiener processes .
2.3. Traditional Delta Hedging
- The first one emerges from the bias of the delta hedging.
- The second one arises because the volatility is not hedged completely.
2.4. Exponential Utility Indifference Pricing
- 1.
- If , then .
- 2.
- For , .
- 3.
- For , .
3. Methodology
3.1. Deep Calibration
3.1.1. Generation of Synthetic Data
3.1.2. Feature Scaling and Initialization
- : We then initialize the weights to avoid hindering the training process under the gradient descent optimization algorithm. Here, we initialize the weights/biases as supposed by [29]:
- : We also initialize the calibrated parameters as the truncated normal continuous random variables.
3.1.3. Fully Connected Neural Network
3.1.4. Calibration Objective
3.1.5. Levenberg Marquardt Algorithm
3.2. Deep Hedging
3.2.1. Optimized Certainty Equivalent of Exponential Utility
3.2.2. Recurrent Neural Network Architecture
3.2.3. Fully Recurrent Neural Network Architecture
3.2.4. Gated Recurrent Unit Neural Network Architecture
- The first layer, input1: stock price, input2: implied volatility;
- Concatenating the two inputs;
- The strategy layer (GRU), input: 2, hidden layer: neurons = 10, outputs: 1;
- Differentiating the adjacent outputs.
4. Experiments
4.1. Deep Calibration Performance under the rBergomi Model
- The heatmap of log moneyness and time to maturity under the Heston model, using S&P 500 data, is given in Figure 8.
- Set is shuffled and partitioned into the training set, validation set and test set, as in Table 4.
- The calibrated parameters are initialized as the truncated normal continuous random variables given in Table 5.
4.2. Deep Hedging Performance under the rBergomi Model
- Parametric methods based on the assumption of conditional normality and economic models for volatility dynamics.
- Methods based on simulations, e.g., Historical Simulation (HS) and Monte Carlo Simulation (MCS).
- Methods based on Extreme Value Theory (EVT).
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Hull, J.; White, A. The pricing of options on assets with stochastic volatilities. J. Financ. 1987, 42, 281–300. [Google Scholar] [CrossRef]
- Stein, E.M.; Stein, J.C. Stock price distributions with stochastic volatility: An analytic approach. Rev. Financ. Stud. 1991, 4, 727–752. [Google Scholar] [CrossRef]
- Bergomi, L. Smile Dynamics III. 2008. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1493308 (accessed on 29 October 2022).
- Bergomi, L. Smile Dynamics IV. 2009. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1520443 (accessed on 29 October 2022).
- Heston, S.L. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Guidolin, M.; Timmermann, A. Option prices under Bayesian learning: Implied volatility dynamics and predictive densities. J. Econ. Dyn. Control. 2003, 27, 717–769. [Google Scholar] [CrossRef] [Green Version]
- Gatheral, J.; Jaisson, T.; Rosenbaum, M. Volatility is rough. Quant. Financ. 2018, 18, 933–949. [Google Scholar] [CrossRef]
- El Euch, O.; Fukasawa, M.; Rosenbaum, M. The microstructural foundations of leverage effect and rough volatility. Financ. Stoch. 2018, 22, 241–280. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, M.; Tomas, M. From microscopic price dynamics to multidimensional rough volatility models. Adv. Appl. Probab. 2021, 53, 425–462. [Google Scholar] [CrossRef]
- Dandapani, A.; Jusselin, P.; Rosenbaum, M. From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect. Quant. Financ. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Bayer, C.; Friz, P.; Gatheral, J. Pricing under rough volatility. Quant. Financ. 2016, 16, 887–904. [Google Scholar] [CrossRef]
- Zhu, Q.; Loeper, G.; Chen, W.; Langrené, N. Markovian approximation of the rough Bergomi model for Monte Carlo option pricing. Mathematics 2021, 9, 528. [Google Scholar] [CrossRef]
- Hernandez, A. Model Calibration with Neural Networks. 2016. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2812140 (accessed on 29 October 2022).
- Bayer, C.; Horvath, B.; Muguruza, A.; Stemper, B.; Tomas, M. On deep calibration of (rough) stochastic volatility models. arXiv 2019, arXiv:1908.08806. [Google Scholar]
- Horvath, B.; Muguruza, A.; Tomas, M. Deep learning volatility: A deep neural network perspective on pricing and calibration in (rough) volatility models. Quant. Financ. 2021, 21, 11–27. [Google Scholar] [CrossRef]
- Stone, H. Calibrating rough volatility models: A convolutional neural network approach. Quant. Financ. 2020, 20, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.W. Agent inspired trading using recurrent reinforcement learning and lstm neural networks. arXiv 2017, arXiv:1707.07338. [Google Scholar]
- Jiang, Z.; Xu, D.; Liang, J. A deep reinforcement learning framework for the financial portfolio management problem. arXiv 2017, arXiv:1706.10059. [Google Scholar]
- Buehler, H.; Gonon, L.; Teichmann, J.; Wood, B. Deep hedging. Quant. Financ. 2019, 19, 1271–1291. [Google Scholar] [CrossRef]
- Horvath, B.; Teichmann, J.; Zuric, Z. Deep Hedging under Rough Volatility. Risk 2021, 9, 1–20. [Google Scholar]
- Chakrabarti, B.; Santra, A. Comparison of Black Scholes and Heston Models for Pricing Index Options. 2017. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2943608 (accessed on 29 October 2022).
- Jacquier, A.; Martini, C.; Muguruza, A. On VIX futures in the rough Bergomi model. Quant. Financ. 2018, 18, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Bennedsen, M.; Lunde, A.; Pakkanen, M.S. Hybrid scheme for Brownian semistationary processes. Financ. Stoch. 2017, 21, 931–965. [Google Scholar] [CrossRef] [Green Version]
- Kurpiel, A.; Roncalli, T. Option Hedging with Stochastic Volatility. 1998. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1031927 (accessed on 29 October 2022).
- Hodges, S. Optimal replication of contingent claims under transaction costs. Rev. Future Mark. 1989, 8, 222–239. [Google Scholar]
- Davis, M.H.; Panas, V.G.; Zariphopoulou, T. European option pricing with transaction costs. SIAM J. Control Optim. 1993, 31, 470–493. [Google Scholar] [CrossRef] [Green Version]
- McCrickerd, R.; Pakkanen, M.S. Turbocharging Monte Carlo pricing for the rough Bergomi model. Quant. Financ. 2018, 18, 1877–1886. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329. [Google Scholar]
- Boulanger-Lewandowski, N.; Bengio, Y.; Vincent, P. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. arXiv 2012, arXiv:1206.6392. [Google Scholar]
- Mikolov, T.; Joulin, A.; Chopra, S.; Mathieu, M.; Ranzato, M. Learning longer memory in recurrent neural networks. arXiv 2014, arXiv:1412.7753. [Google Scholar]
- Dupire, B. Pricing with a smile. Risk 1994, 7, 18–20. [Google Scholar]
- Danielsson, J.; De Vries, C.G. Value-at-risk and extreme returns. Ann. D’Econ. Stat. 2000, 20, 239–270. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Kirkby, J.L.; Nguyen, D. A data-driven framework for consistent financial valuation and risk measurement. Eur. J. Oper. Res. 2021, 289, 381–398. [Google Scholar] [CrossRef]
- Gilli, M. An application of extreme value theory for measuring financial risk. Comput. Econ. 2006, 27, 207–228. [Google Scholar] [CrossRef] [Green Version]
- Carol, A. Market Models: A Guide to Financial Data Analysis; John Willer & Sons: New York, NY, USA, 2001. [Google Scholar]
- Cui, X.; Sun, X.; Zhu, S.; Jiang, R.; Li, D. Portfolio optimization with nonparametric value at risk: A block coordinate descent method. Inf. J. Comput. 2018, 30, 454–471. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1597–1600. [Google Scholar]
Architecture | Training Loss | Validation Loss | Training Time (s) |
---|---|---|---|
FRNN | 6.6390 | 6.4611 | 1548.17293 |
GRU-NN (5 neurons) | 6.3475 | 6.4465 | 904.23617 |
GRU-NN (10 neurons) | 6.3342 | 6.4284 | 913.25348 |
GRU-NN (15 neurons) | 6.5821 | 6.7498 | 923.68151 |
GRU-NN (30 neurons) | 7.9071 | 7.2206 | 962.75918 |
Params | Reference Params | S&P: Calibrated Params | FTSE: Calibrated Params |
---|---|---|---|
−0.5 | −0.7608 | −0.6125 | |
1.0 | 0.9444 | 0.2222 | |
0.1 | 0.1496 | 0.1211 | |
0.6 | 0.7379 | 0.2038 | |
0.02 | 0.0262 | 0.0134 |
Params | Reference Params | S&P: Calibrated Params | FTSE: Calibrated Params |
---|---|---|---|
H | 0.07 | 0.083962 | 0.088832 |
1.9 | 1.631438 | 1.530887 | |
−0.9 | −0.929407 | −0.929521 | |
Subsets | Sizes |
---|---|
450,000 | |
25,000 | |
24,967 |
Parameter | Truncated Normal Distribution |
---|---|
H | [−1.2,8.6,0.07,0.05] |
[−0.25, 2.25, −0.95, 0.2] | |
[−3, 3, 2.5, 0.5] | |
[−2.5, 7, 0.3, 0.1] |
Model | Data | Mean | Std | VaR 0.99 | VaR 0.95 | VaR 0.90 |
---|---|---|---|---|---|---|
Black–Scholes | S&P 500 | −0.3934 | 1.1776 | 4.5506 | 2.4638 | 1.7089 |
FTSE 100 | −1.1511 | 1.7130 | 7.7697 | 6.4398 | 5.6278 | |
Heston | S&P 500 | −0.5410 | 1.1483 | 3.1512 | 2.3510 | 1.9326 |
FTSE 100 | −2.0525 | 2.7044 | 7.6776 | 4.2879 | 3.0168 | |
rBergomi | S&P 500 | −0.3847 | 1.5605 | 4.3889 | 2.9673 | 2.3806 |
FTSE 100 | −1.0564 | 1.9375 | 6.4365 | 4.4683 | 3.6126 |
Characteristics | Black–Scholes | Heston | rBergomi |
---|---|---|---|
Markovian | ✔ | ✔ | ✘ |
Semi-martingale | ✔ | ✔ | ✘ |
Regularity of the volatility | Constant | ||
Skewness | ✩ | ★ | ★★ |
Simulation speed | ★★ | ★ | ✩ |
Microstructural explanation for the volatility | ✩ | ★ | ★★ |
Accounts for variations in asset prices and price volatility | ✩ | ★ | ★★ |
IV surface simulation | ✩ | ★ | ★★ |
Fit short maturities | ★ | ✩ | ★★ |
Number of parameters to be calibrated | ★★ | ✩ | ★ |
Hedging performance (Delta, OCE) | ★ | ✩ | ★★ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Diao, X. From Stochastic to Rough Volatility: A New Deep Learning Perspective on Hedging. Fractal Fract. 2023, 7, 225. https://doi.org/10.3390/fractalfract7030225
Zhu Q, Diao X. From Stochastic to Rough Volatility: A New Deep Learning Perspective on Hedging. Fractal and Fractional. 2023; 7(3):225. https://doi.org/10.3390/fractalfract7030225
Chicago/Turabian StyleZhu, Qinwen, and Xundi Diao. 2023. "From Stochastic to Rough Volatility: A New Deep Learning Perspective on Hedging" Fractal and Fractional 7, no. 3: 225. https://doi.org/10.3390/fractalfract7030225
APA StyleZhu, Q., & Diao, X. (2023). From Stochastic to Rough Volatility: A New Deep Learning Perspective on Hedging. Fractal and Fractional, 7(3), 225. https://doi.org/10.3390/fractalfract7030225