Starlike Functions Based on Ruscheweyh q−Differential Operator defined in Janowski Domain
Abstract
:1. Introduction, Definitions and Preliminaries
2. The Fekete–Szegö Inequality for
3. The Coefficient Inequalities for
4. Characterization Properties
5. Partial Sums
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Aouf, M.K.; Mashwani, W.K.; Salleh, Z.; Tang, H. Applications of a new q-difference operator in Janowski-type meromorphic convex functions. J. Funct. Spaces 2021, 2021, 5534357. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Arjika, S. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Sivasubramanian, S. Hypergeometric functions in the parabolic starlike and uniformly convex domains. Integr. Transf. Spec. Func. 2007, 18, 511–520. [Google Scholar] [CrossRef]
- Khan, M.G.; Darus, M.; Ahmad, B.; Murugusundaramoorty, G.; Khan, R.; Khan, N. Meromorphic starlike functions with respect to symmetric points. Int. J. Anal. Appl. 2020, 18, 1037–1047. [Google Scholar]
- Uçar, H.E.Ö. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122–126. [Google Scholar]
- Wongsaijai, B.; Sukantamala, N. Certain properties of some families of generalized starlike functions with respect to q-calculus. Abstr. Appl. Anal. 2016, 2016, 1–8. [Google Scholar]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski Functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Vijaya, K.; Murugusundaramoorthy, G.; Yalcin, S. Certain class of analytic functions involving Salagean type q-difference operator. Konuralp J. Math. 2018, 6, 264–271. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kanas, S.; Răducanu, D. Some subclass of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p, q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 2016, 301. [Google Scholar] [CrossRef] [Green Version]
- Purohit, S.D.; Raina, R.K. Fractional q-calculus and certain subclasses of univalent analytic functions. Mathematica 2013, 55, 62–74. [Google Scholar]
- Totoi, A.; Cotîrlă, L.I. Preserving classes of meromorphic functions through integral operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef]
- Silvia, E.M. Partial Sums of Convex Functions of order α. Houston. J. Math. Math. Soc. 1985, 11, 397. [Google Scholar]
- Rosy, T.; Subramanian, K.G.; Murugusundaramoorthy, G. Neighbourhoods and Partial sums of Starlike Functions Based on Ruscheweyh Derivatives. J. Ineq. Pure Appl. Math. 2003, 4, 64. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function theory of Complex Analysis. Iran. J. Sci Technol Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Srivastava, H.M.; Raducanu, D.; Zaprawa, P.A. Certain subclass of analytic functions defined by means of differential subordination. Filomat 2016, 30, 3743–3757. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables. I and II. IMA J. Appl. Math. 1983, 30, 205–209. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K. Certain subclasses of analytic functions associated with generalized telephone numbers. Symmetry 2022, 14, 1053. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotîrlǎ, L.-I.; Murugusundaramoorthy, G. Starlike Functions Based on Ruscheweyh q−Differential Operator defined in Janowski Domain. Fractal Fract. 2023, 7, 148. https://doi.org/10.3390/fractalfract7020148
Cotîrlǎ L-I, Murugusundaramoorthy G. Starlike Functions Based on Ruscheweyh q−Differential Operator defined in Janowski Domain. Fractal and Fractional. 2023; 7(2):148. https://doi.org/10.3390/fractalfract7020148
Chicago/Turabian StyleCotîrlǎ, Luminiţa-Ioana, and Gangadharan Murugusundaramoorthy. 2023. "Starlike Functions Based on Ruscheweyh q−Differential Operator defined in Janowski Domain" Fractal and Fractional 7, no. 2: 148. https://doi.org/10.3390/fractalfract7020148
APA StyleCotîrlǎ, L. -I., & Murugusundaramoorthy, G. (2023). Starlike Functions Based on Ruscheweyh q−Differential Operator defined in Janowski Domain. Fractal and Fractional, 7(2), 148. https://doi.org/10.3390/fractalfract7020148