Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects
Abstract
:1. Introduction
2. Preliminaries
- ,
- .
3. Solvability Results
- i.
- there exist constants , , such that for all ;
- ii.
- the set is an equicontinuous subset of , , where .
4. Approximate Controllability
- [AC]:
- System (17) is approximate controllability on .
5. Example
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional differential equations. In Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA, 1993; Volume 198. [Google Scholar]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2017. [Google Scholar]
- Li, M.; Debbouche, A.; Wang, J. Relative controllability in fractional differential equations with pure delay. Math. Methods Appl. Sci. 2018, 4, 8906–8914. [Google Scholar] [CrossRef]
- Dhayal, R.; Malik, M. Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses. Chaos Solitons Fractals 2021, 151, 111292. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Zhu, Q. Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos, Solitons Fractals 2022, 156, 111822. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer Fractional Integro-Differential Equations with Almost Sectorial Operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
- Boufoussi, B.; Hajji, S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Stat. Probab. Lett. 2012, 82, 1549–1558. [Google Scholar] [CrossRef]
- Dhayal, R.; Malik, M.; Abbas, S. Approximate controllability for a class of non-instantaneous impulsive stochastic fractional differential equation driven by fractional Brownian motion. Differ. Equations Dyn. Syst. 2021, 29, 175–191. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Wang, J. Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps. Bull. Iran. Math. Soc. 2018, 44, 673–690. [Google Scholar] [CrossRef]
- Sathiyaraj, T.; Balasubramaniam, P. Controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion. ISA Trans. 2018, 82, 107–119. [Google Scholar] [CrossRef]
- Kachan, I.V. Stability of linear stochastic differential equations of mixed type with fractional Brownian motions. Differ. Equ. 2021, 57, 570–586. [Google Scholar] [CrossRef]
- Dieye, M.; Lakhel, E.; Mckibben, M.A. Controllability of fractional neutral functional differential equations with infinite delay driven by fractional Brownian motion. IMA J. Math. Control Inf. 2021, 38, 929–956. [Google Scholar] [CrossRef]
- Hernández, E.; O’Regan, D. On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fečkan, M. A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 2015, 46, 915–933. [Google Scholar] [CrossRef]
- Yan, Z.; Jia, X. Existence and controllability results for a new class of impulsive stochastic partial integro-differential inclusions with state-dependent delay. Asian J. Control 2017, 19, 874–899. [Google Scholar] [CrossRef]
- Yang, P.; Wang, J.; Fečkan, M. Boundedness, periodicity, and conditional stability of noninstantaneous impulsive evolution equations. Math. Methods Appl. Sci. 2020, 43, 5905–5926. [Google Scholar] [CrossRef]
- Liu, J.; Wei, W.; Xu, W. Approximate Controllability of Non-Instantaneous Impulsive Stochastic Evolution Systems Driven by Fractional Brownian Motion with Hurst Parameter H∈(0,12). Fractal Fract. 2022, 6, 440. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Non-instantaneous impulses in caputo fractional differential equations. Fract. Calc. Appl. Anal. 2017, 20, 595–622. [Google Scholar] [CrossRef]
- Dhayal, R.; Malik, M.; Abbas, S.; Debbouche, A. Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses. Math. Methods Appl. Sci. 2020, 43, 4107–4124. [Google Scholar] [CrossRef]
- Boudjerida, A.; Seba, D. Controllability of nonlocal Hilfer fractional delay dynamic inclusions with non-instantaneous impulses and non-dense domain. Int. J. Dyn. Control 2022, 10, 1613–1625. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhou, Y. A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 806–831. [Google Scholar] [CrossRef]
- Triggiani, R. A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control Optim. 1977, 15, 407–411. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S.M. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
- Abid, S.H.; Hasan, S.Q.; Quaez, U.J. Approximate controllability of fractional Sobolev type stochastic differential equations driven by mixed fractional Brownian motion. J. Math. Sci. 2015, 3, 3–11. [Google Scholar]
- Tamilalagan, P.; Balasubramaniam, P. Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators. Int. J. Control 2017, 90, 1713–1727. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ren, Y.; Debbouche, A.; Mahmudov, N.I. Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions. Appl. Anal. 2016, 95, 2361–2382. [Google Scholar] [CrossRef]
- Dhayal, R.; Malik, M.; Abbas, S. Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous impulses and Poisson jumps. Asian J. Control. 2021, 23, 2669–2680. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Finite-approximate controllability of semilinear fractional stochastic integro-differential equations. Chaos Solitons Fractals 2020, 139, 110277. [Google Scholar] [CrossRef]
- Arora, S.; Mohan, M.T.; Dabas, J. Existence and approximate controllability of non-autonomous functional impulsive evolution inclusions in Banach spaces. J. Differ. Equations 2022, 307, 83–113. [Google Scholar] [CrossRef]
- Kumar, S.; Abdal, S.M. Approximate controllability of non-instantaneous impulsive semilinear measure driven control system with infinite delay via fundamental solution. IMA J. Math. Control Inf. 2021, 38, 552–575. [Google Scholar] [CrossRef]
- Anukiruthika, K.; Durga, N.; Muthukumar, P. Approximate controllability of semilinear retarded stochastic differential system with non-instantaneous impulses: Fredholm theory approach. IMA J. Math. Control Inf. 2021, 38, 684–713. [Google Scholar] [CrossRef]
- Nualart, D. The Malliavin Calculus and Related Topics; Springer: New York, NY, USA, 1995. [Google Scholar]
- Dieye, M.; Diop, M.A.; Ezzinbi, K. On exponential stability of mild solutions for some stochastic partial integro-differential equations. Stat. Probab. Lett. 2017, 123, 61–76. [Google Scholar] [CrossRef]
- Sakthivel, R.; Revathi, P.; Ren, Y. Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. Theory Methods Appl. 2013, 81, 70–86. [Google Scholar] [CrossRef]
- Bao, H.; Cao, J. Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay. Adv. Differ. Equ. 2017, 66, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hasse, M. The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications; Birkhauser-Verlag: Basel, Switzerland, 2006. [Google Scholar]
- Dabas, J.; Chauhan, A.; Kumar, M. Existence of the mild solutions for impulsive fractional equations with infinite delay. Int. J. Differ. Equ. 2011, 2011, 793023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakkar, N.; Dhayal, R.; Debbouche, A.; Torres, D.F.M. Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal Fract. 2023, 7, 104. https://doi.org/10.3390/fractalfract7020104
Hakkar N, Dhayal R, Debbouche A, Torres DFM. Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal and Fractional. 2023; 7(2):104. https://doi.org/10.3390/fractalfract7020104
Chicago/Turabian StyleHakkar, Naima, Rajesh Dhayal, Amar Debbouche, and Delfim F. M. Torres. 2023. "Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects" Fractal and Fractional 7, no. 2: 104. https://doi.org/10.3390/fractalfract7020104
APA StyleHakkar, N., Dhayal, R., Debbouche, A., & Torres, D. F. M. (2023). Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal and Fractional, 7(2), 104. https://doi.org/10.3390/fractalfract7020104