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Abstract: We herein report a new class of impulsive fractional stochastic differential systems driven
by mixed fractional Brownian motions with infinite delay and Hurst parameter # € (1/2,1). Using
fixed point techniques, a g-resolvent family, and fractional calculus, we discuss the existence of a
piecewise continuous mild solution for the proposed system. Moreover, under appropriate conditions,
we investigate the approximate controllability of the considered system. Finally, the main results are
demonstrated with an illustrative example.
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1. Introduction

For a long time, the subject of fractional calculus and its applications has gained a lot
of importance, mainly because fractional calculus has become a powerful tool with more
accurate and successful results in modeling several complex phenomena in numerous,
seemingly diverse and widespread fields of science and engineering. It was found that
various, especially interdisciplinary, applications can be elegantly modeled with the help of
fractional derivatives [1-4]. See also the recent works of [5-8].

Fractional Brownian motion (fBm for short) is a family of Gaussian random processes
that are indexed by the Hurst parameter H € (0,1). It is a self-similar stochastic process
with long-range dependence and stationary increment properties when # > 1/2. For more
recent works on fractional Brownian motion, see [9-14] and the references therein.

In order to describe various real-world problems in physical and engineering sciences
subject to abrupt changes at certain instants during the evolution process, impulsive frac-
tional differential equations have become important in recent years as mathematical models
of many phenomena in both physical and social sciences. Impulsive effects begin at any
arbitrary fixed point and continue with a finite time interval, known as non-instantaneous
impulses. For more details, we refer the reader to [15-23].

The concept of controllability plays a major role in finite dimensional control
theory. However, its generalization to infinite dimensions is too strong and has lim-
ited applicability, while approximate controllability is a weaker concept completely
adequate in applications [24].

Recently, many authors have established approximate controllability results of
(fractional) impulsive systems [25-31]. For example, Kumar et al. [32] investigated
the approximate controllability for impulsive semilinear control systems with delay;
Anukiruthika et al. [33] analyzed the approximate controllability of semilinear stochastic
systems with impulses. Although several works exist in this area, the study of the approxi-
mate controllability of impulsive fractional stochastic differential systems driven by mixed
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noise with infinite delay and Hurst parameter # € (1/2,1) is still an understudied topic in
the literature. This fact provides the motivation of our current work.

We consider an impulsive fractional stochastic delay differential equation with mixed
fractional Brownian motion defined by

~ ~

H
“Dfz(t) = P(t) + F(tz2) + 6620 oD 4 o0 e up (s, ),

(t) = Ki(t,ze), te€ UL (t,si], 1)
(t) = ¢(t), ¢(t) € Dy,

where P : D(P) C Z — Z is the generator of an g-resolvent family {S,(t) : t > 0} on the
separable Hilbert space Z, °D/ is the Caputo fractional derivative of order 1/2 < q < 1,
and state z(-) takes values in the space Z,and 0 = t) =59 <t <51 < fp < -+- < by <
Sm < tme1 = T < co. The functions KC;(t, z¢) represent the non-instantaneous impulses
during the intervals (¢;,s;], i = 1,2,...,m, W = {W(t) : t > 0} is a Q-Wiener process
defined on a separable Hilbert space ), and B = {Bﬁ(t) :t > 0} is a Q-fBm with the
Hurst parameter He (1/2,1), defined on a separable Hilbert space ). The history-valued
function z; : (—o0,0] — Z is defined as z;(6) = z(t +6), ¥ 6 < 0, and belongs to an abstract
phase space Dj,. The initial data ¢ = {¢(t),t € (o0,0]} are Fp-measurable, Dj-valued

z
z

random variable independent of W and B*. The functions F, G, o, and IC; satisfy several
suitable hypotheses, which will be specified later.

The work is arranged as follows. In Section 2, relevant preliminaries are given that will
be used later. In Section 3, we prove the existence of a piecewise continuous mild solution
for the proposed system (1). Then, in Section 4, we study the approximate controllability
for problem (1). In Section 5, an example is given to show the application of the obtained
results. We end with Section 6, in which we present the conclusion of our results and also
suggest directions of possible future research.

2. Preliminaries

Let L();, Z) denote the space of all linear and bounded operators from Y; to Z,j = 1,2.
The notation || - || represents the norms of Z, Vi, L()Jj, Z). Let (O, F,{Fi}i>0,P) be a
filtered complete probability space, where 7 is the o-algebra generated by {B%(e), W(e) :
e € [0,t]} and P-null sets. Let Q; € L());,);) be the operators defined by Q]-e{: = )\585
with finite trace Tr(Q;) = Y2 )L{: < oo, where {)\5},»21 are non-negative real numbers

and {3{:}1'21 is a complete orthonormal basis in ;. Then, there exists a real independent
sequence %;(t) of the standard Wiener process such that

W) =Y \/}T}%’i(t)e}.
i=1
The infinite dimensional V,-valued fBm B% (t) is defined as
B =Y\ 2at (),
i=1

where ,%’Z'[ (t) are real, independent fBms.

Let Z = {#(t),t € T}, J = [0, T] be a Wiener process and " = {#™(t),t € T} be
the one-dimensional fBm with Hurst index # € (1/2,1). The fBm " (t) has the following
integral representation:

B (t) = /Ot Ay (L e)d(e),
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where the kernel %7 (t, e) is defined as

ot . .
Ay (te) = xﬁel/%ﬂ/ (1 —e)H=32¢H=17247 for t > e.
e

95, y N
We apply #;(t,e) = 0if t < e. Note that atH(t,e) = }iﬁ(f/e)%5 1/Z(t—e)H’Wz.

Here, Xy = [fL(27L —1)/&(2 — 2, H — 1/2)]'/? and £(-,-) is the Beta function. For
A € LZ( [0, T]), it follows from [34] that the Wiener-type integral of the function A w.r.t.

fBm %™ is defined by
T . T
/ Ale)d B () = / A (e)dB(e),
0 0

Jﬁ/
where JZ7 A f A(t t,e)dt.
Let ¢; € L(y], ) and defme

ol = [iu\/ﬂ%eﬂz]
L

If || ;| i < 00, then ¢; are called Q;-Hilbert-Schmidt operators, and the spaces c 2V, 2)
2

1/2

are real and separable Hilbert spaces with inner product (¢!, ¢?) =L (g! el, @ 2¢] :). The
2

stochastic integral of function ¥ : J — £3()%, Z) w.r.t. fBm B is defined by

/Ot e)dBH (e 2/ VA2 () 2d B (e Z/ VAR (Y R)d ). ?)

Lemma 1 (See [9]). IfY : J — L3()a, Z) satisfies fOT ¥ (e) ||2£2de < oo, then Equation (2) is a
2

well-defined Z-valued random variable such that

-1 [ 2

AR [ (o)) 3y

]E‘ /Otlf(e)dzsﬁ(e) : <27

Lemma 2 (See [35]). For any a > 1 and for an arbitrary L1-valued predictable process Y(-),

[ v < wea-nr( [ Ever) «) o

For « = 1, we obtain

sup E‘
ec[0,t]

e N 2 t
sup E’ / Y(0)dW(7)|| < / E[[Y(e) |2, de.
e€(0,t] 0 0
Assume that /i : (—00,0] — (0, 00) with @ = f F)dt < oo is a continuous function.
We define Dy, by
Dy, = {4) : (—00,0] — Z, for any a > 0, (E|p(8)|*)!/? is a measurable and bounded function on

[—a,0] with ¢(0) =0, and / ) sup (E|p(0)?)?de < oo}.

e<6<0
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If Dy, is endowed with the norm

0
19ll, = [ _h(e) sup (E|g(0)|*)/2de, ¢ € D,

e<60<0

then (Dy, || . ||p,) is a Banach space [36].

Define the space Dy = {z: (=00, T] = Z,z|7 € C(J;, 2),i =0,1,...,m, and there

exist z(t; ) and z(t]") with z(t; ) = z(t;), and zg = ¢ € Dy}, with the norm

Izllp, = lI¢llp, + sup (Ellz(£)]*)'2,
te[0,T]

where J; = (t;,ti41],1=0,1,...,m.
Lemma 3 (see [37]). Ifforallt € [0,T], zt € Dy, zg € Dy, then

Iz¢llp, < @ sup (Ellz(t)|*)"? + ||zo]|p,-
te[0,T]

Definition 1 (see [38]). Let M > 0,0 € [t/2, 7], and w € R. A closed and linear operator P

is called a sectorial operator if
1. p(P) CLpw ={AEC: A #w,larg(A — w)| < 0},

Lemma 4 (see [39]). Let P be a sectorial operator. Then, the unique solution of the linear fractional system

‘Diz(t) =Pz(t) + F(t), t>t >0, 0<g<]1,
z(t) = (1), t<to,

is given by
ot
2(1) :z,(t—to)z(to)+/t Syt —e) F(e)de,
0
where
_ 1 o AT
T = o5 /Bre a—pth

1 M
S = g, ot

Here, B, denotes the Bromwich path.

3. Solvability Results
We assume the following hypotheses.

Hypothesis 1 (H1). Ifq € (0,1) and P € P7(6y, wy), then, for any z € Z and t > 0, we have

Ta(t)]| < Crevtand ||Sy()|| < Coe® (14 #171), w > wy. Thus, we have
ITg(OI < My and ||S(t)]| < Mat?™,
where My = sup_ .7 Cre®t and My = sup_;. 1 Coe®' (14 771).

Hypothesis 2 (H2). There exists a constant Ny > 0 such that

E||F(t, 1) = F(L,92) > < N llyr = 92llp,, VEET, $1,42 € D
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Hypothesis 3 (H3). Function ¢ : J — L3(), Z) satisfies fot Ha(e)||2£2de < oo, for every
2
t € J, and there exists a constant Ay > 0 such that ||c(e) ||2£2 < Ag, uniformly in J.
2

Hypothesis 4 (H4). There exists a constant Ng > 0 such that
E|G(t, 1) = Gt 92)llZy < Ng llg1 = 92llB,, VEET, 12 €Dy
Hypothesis 5 (H5). There are constants Ly, > 0,i=1,2,...,m, such that

E|[Ci(t 1) — Ki(t, ¥2)|I* < Ly, 11 — 2llp,, Yt € T, ¥1,92 € Dy

Definition 2. An Fi-adapted random process z : (—oo, T| — Z is called the mild solution of (1) if,
foreveryt € J, z(t) satisfies zo = ¢ € Dy, z(t) = Ki(t,z¢) forall t € (t;,5;],i =1,2,...,m, and

[ 81t = o) Fle,z)de
+ [ 80 Ge 2 + [ 5,0 - r(aie)
forall t € [0,t), and
2(t) = E(t_si)Ki(sisti)+/S:5q(t—€).7:(e,ze)de
+ /S’_t Syt —e)G(e,ze)dNV (e) + /sj Sy(t —e)o(e)dB  (e), ®)
forallt € (sj,tii1],i=1,2,...,m

Theorem 1. Assume that conditions (H1)—(H5) are satisfied. Then, problem (1) has a unique mild
solution on (—oo, T|, provided that

where

q
— 2.2
" 2/\42@( 7 -1

2q—-1
N]:t Ngt;
o 2 2 2,2 i+1 i+1
Proof. We define the operator & from D7 to Dr as follows:
¢(t), t € (—o0,0]

fo (t —e)F(e, ze)de

+ fo Syt —e)Gle,z)dW(e) + [1 Sy(t —e)a(e)dBH(e), te [0,1]
Ki(t,z¢), te (4,5
To(t —si)Ki(si, zs;) —i—f S;(t —e)Fle, ze)de )

+fs,- S;(t—e)G(e, ze)dW +f Sy(t—e)a(e)dB™(e), t€ (sitiy1]-

For ¢ € Dy, define

0, te J.



Fractal Fract. 2023, 7, 104 6 of 16

Then, go = ¢. Next we define

o]0, t € (—o0,0]
gt = {y(t), teJ

for each y € C(J,R) with z(0) = 0. If z(-) satisfies (3), then z(t) = g(t) + 7(t) fort € J,
which implies that z; = g; + ; for t € J, and the function y(-) satisfies

fot Syt —e)F (e, ge + Fe)de + fot Sy(t—e)Gle ge + 7o)V (e)

+ [1 Syt —e)a(e)dBR(e), te0,h]
y(t) = S Ki(t, gt +7t), t € (5]
777(t - si)’Ci(si'gSi + }751') + fsi Sq(t - e)]:(erge + ye)de

+ J2 Syt —e)Gle,ge + 7o)V (e) + [; Syt —e)o(e)dBM(e)  t € (si,tiga].

Set DY = {y € Dr such that yy = 0}. For any y € DY, we obtain
yllpg = llyollp, +sup(E[ly(5)[*)/? = sup(Elly(t)|*)"2.
teJ teg

Thus, (DY, || - “DOT ) is a Banach space.
Define the operator ¥ from D(% to D(% as follows:

Jo Sqlt =) F(e,ge + Fe)de + [5 Syt — )G e, ge + 7))

+ [y Sq(t —e)a(e)dBH (e), t [0,
(Fy)(t) = { Ki(t, g+ 7t), t e (t,si]
Tq(t - Si)’Ci(Sifgsi + ]751‘) + fsi Sﬂ(t - e)]:(e/gﬁ + ]76)‘15 A

+ J2 Sq(t—e)G(e,ge +Te)dW(e) + [, Syt —e)o(e)dBT(e) € (sitifa].

In order to prove the existence result, we need to show that ¥ has a unique fixed point. Let
y,y* € DY. Then, forall t € [0,#], we have

2
BICt(0) - (40O < 28] [ 800 = ) (Fle, gt 50) — Florget 50l

2
+2E

‘/Ot Sq(t—e)(Gle,ge +7e) — Gle,ge +72))dW(e)

2M3t] - -
T [ =T N g~ g2l de

t
203 [ (8= o)1 2Ng 7 — 7 [ e
q
2M3t]

t
PO [ - ey Npa? supElye) — y* (o) e
q 0 eeJ

IN

IN

t
+2M3 [ (£~ )M 2Ng@? sup E|ly(e) — v (e)|[*de
0 ecJ

Npts?  Ngt™!

IN

Hence,

2q 2q—1
" Nrt Ngt "
EN(En)(0) - (B0 < w%wZ( . )ny—ynég. @
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Fort € (t;,s;],i=1,2,...,m, we have

E[[(¥y)(t) — Ty )OI < EIKi(t, g +7:) — Ki(t, g+ 7)1
< L llge =i 115,
< L@ supE|y(t) —y (1)
teJ
< L@y =yl
Hence,
E[|(¥y)(t) — (Xy ) D[P < L/ciwz\ly—y*||ng- ()
Similarly, for t € (s;,t;11],i=1,2,...,m, we have
E[[(Fy)(t) — (Fy" ) (DI < BE|To(t —si)(Kilsi, & + Fs;) — Kilsi, gs; + 75)|I°
¢ 2
+3E‘/ Syt —e)(Fle g +7e) — Fle, g+ 7 ))de
Si
¢ ~ 2
+38 [ 8yt =)@ +50) = O + TV
Si
< 3MiLc@ |y — v |5
3M3H ot _ .
Pt [ (= o)1 NI — 52 e
t
+3M3 [ (¢ =) 2Ngl e — 3 |, e
< 3MiLc@ly -y |5
3MEHT Lt
+ =2 [ )i N sup Elly(e) -y (o) [Pde
q Si eeJ
t
+3M3 [ (£~ )0 INg@? sup Ellye) — " (e) e
7S ecJ
2q 2q-1
Nrt; Ngt:
2 2 2 2 +1 +1 * (12
< <3M1L,Cico +3M3@ { q; + qu-1 })IIy—y o
Hence,
2q 2q—-1
. Nzt Ngt; .
El|(#y) () — (Fy) (1) < (3M%Ln[w2+3M%w2{ R })ny—y 2. ©

From Equations (4)—(6), we obtain that

E|[¥y —¥y" g < Lrlly —y"I%
which implies that ¥ is a contraction. Hence, ¥ has a unique fixed point y € D, which is a
mild solution of problem (1) on (—oo, T|. O

Next, using Krasnoselskii’s fixed point theorem, we establish the second existence
result. At this stage we make the following assumptions.
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Hypothesis 6 (H6). The map F : J x Dy — Z is a continuous function, and there exists a
continuous function &1 : J — (0, 00) such that

E|F(t)|* < &) 19l
forall t € J,and & = sup, ;7 G1(t).

Hypothesis 7 (H7). The map G : J x Dy, — c%(yl, Z) is a continuous function, and there
exists a continuous function & : J — (0, 00) such that

EIG(L 97 < &) 191D,
forallt € J and {5 = sup, 7 Go(t).

Hypothesis 8 (H8). The inequality

NzT?1  NgT?1-1
Lyr ZZM%@2< ]1;2 + g > <1

29 -1
holds and
7 /\ s 4
where
A 2H -2
) Zq A] /\2 ZHAU't]
g t DY
Ko 3M21<q2+t1(2q—1)+ 2q—-1 ’
A 212
R 2. 229 (M A2 2Rl
ki = 4MiviAs +4Mat (qz * tiv1(29—1) i 2q -1 ‘

Hypothesis 9 (H9). The maps K; : (t;,s;] x Dy, — Z,i = 1,2,...,m, are continuous func-

tions and

i.  there exist constants v; > 0,i = 1,2,...,m, such that B||IC;(t, v)||> < v; HlpH%h for all
teJ;

ii.  theset {b; : b; € V(m,K;)} is an equicontinuous subset of C((t;,s;],Z),i =1,2,...,m,
where V(7t, ;) = {t = Ki(t,yt) : y € Dxr}.

Theset D, = {y € DY : | yH%(% <r,r > 0} is clearly a convex closed bounded set in
DY for each y € D,. By Lemma 3, we obtain

It +7ellp, < 2015, + 19:05,)

< 4(@® sup E|lx(v) P + [xol, ) +4(@? sup Ellg)|2+ |70/, )
ve([0,t] vel0,t]
< 8(llglp, + @)

Let
A =8E (91, +@%r), A2 =885([l¢lh, +@%r), Az =8(ll¢llp, +@*r).

Theorem 2. Assume conditions (H1)—(H9) are satisfied. Then, problem (1) has at least one mild
solution on (—oo, T).
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Proof. Let & : D, — D, and &, : D, — D, be defined as

0 te0,t]
51(]/)(t) = K:i(t/gt +yt)/ t e (fl',Si]
Tq(t = si)Ki(si, &s; + Ts;) t € (si tig]

and

fot S;(t—e)F(e,ge + e )de )

+ Ji Sat — )G (e, ge + Te)dW(e) + [ Syt —e)a(e)dBH(e), te[0,h)]
E)(t) =40, t € (t,si]

fst,» Sy(t —e)F(e, e + Je)de

+fL Syt —e)G(e,ge + T )AW(e) + [L Syt —e)o(e)dBM(e)  t € (sitina].

For convenience, we divide the proof into various steps.
Step 1. We show that &1y + &y* € D,. Fory,y* € D, and for t € [0,t;], we obtain

2
BlEw)(0)+ €O < 38| [ 8- o (o 0+ e

¢ R 2
+3EH/O Sy(t—e)Gle, g+ 73)dW(e)

+3EH/(: Sy(t —e)o(e)dBh (e) i

ot ot
< ([ artae) ([0 alse o+ sl de)
t
+3M3 [ (t =122 (e) Ige + 92 I de
R . t
+6HAVM%t%H_1/O (t —e)®12de
A A 2AALA2
< 2,29 M 2 |
< 3Mah <q2 Ty 2q—1
Hence,
'y 22
* 2 2,29 ﬂ Ao ZHAg'tl
Ell(&y)(t) + (&y")D]7 < 3M3t <qz The -0 T T 21 ) @)
Fort € (t;,si],i =1,2,...,m, we have
E[[(&) (1) + (E2y") (D> < E[Ki(t g + 7)1
< villge + 75,
< Ul')\3.
Hence,
E[[(&)(1) + (&) (D> < vira. ®)

Similarly, for t € (s;,t;11],i=1,2,...,m, we have
El[(Ewy)(t) + (&) (D? < 4E(Ty(t — si)Ki(si, gs; + ;)17

t 2
/ Sy(t—e) Fle, g0 +77)de
Si

+4E




Fractal Fract. 2023, 7, 104 10 of 16
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+4E| [ St~ e)G(e,ge + 7V (e)
5
; o2
+4E / Syt —e)o(e)dB™(e)
Si
< 4./\/1%1)1‘)\3
t t
sargy( [ -emtae) ([ oo teelg + i e
t
M [ (= )M 7282(0)1ge + 72, de
R . t
+8’HAUM%tﬁ{fl/ (t — )21 2de
A A A A2
< 2. 2,29 [ A1 2 i+1 )
>~ 4/\/1101)\3 + 4M2tl+1 (qz + ti+1(2b] — 1) + 2q ]
Therefore,
A2
* 2 < 2. 2,2q ﬂ A ohitl
EH(‘%]/)“) + (52]/ )(t)H = 4M1U1/\3+4M2t1+1<q2 + ti+1(2q*1) + qul ) (9)

Equations (7)—(9) imply that
€1y + 52y*||ZDoT <

Thus, &1y + &Ey* € Dy

Step 2. We show that the operator &£ is continuous on D,. Let {y" }°_; be a sequence
such that y" — yin D,. Forall t € (t;,s;],i=1,2,...,m, we have

El[(Ey")(H) = (Ey) (D> < EKi(E, gt + 7)) — Kilt, g+ 70) |1
Since the maps K;, i = 1,2,...,m, are continuous functions, one has
Jim [|€1y" — &1y = 0. (10)

Forallt € (s;, tjy1],i=1,2,...,m, we have

El[(Ey")(H) = EOIF < BTt = si) (Kisi s, + ¥'s) — Kilsi, gs; + 7s) 1
Therefore,

: n 2
Jim [[&1y" = Eyllpg = 0. (11)

Equations (10) and (11) imply that the operator &; is continuous on D,.

Step 3. The operator £1 maps bounded sets into bounded sets in D,. Let us show that
for r > 0 there exists a r > 0 such that, for each y € D,, we obtain E||&; (y)(t)|*> < r, for all
te(sitiy1], i=1,2,...,m. Forallt € (s;, t;y1],i=1,2,...,m, we have

El(&y)(0)IIF < BTt —s)Ki(si, gs; + Fs;) 1> < Mivids.
Forallt € (t;,s;],i=1,2,...,m, we have

El(Ey)DI? < E[Ki(t g +7)l* < vids.
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ch()

2(t) =
2(t) =

Pz(t) + Ad(t) + F(t,zt) + G(t, zt)
(f zt

From the above equations, we obtain
2
Iz < .

where r = max{/\/l%vi)tg,, viA3}. Hence, the operator £ maps bounded sets into bounded
sets in D;,.

Step 4. The operator &7 is equicontinuous. For all A1, Ay € (¢, 5], Ay < Ap,and y € D,
we obtain

E[(&1y)(82) — (E1y) (M) 1> S B|IKi(A2, 8a, + Tay) — Ki(A1, 84, + Tay) 11> (12)

For all A1, Ay € (si,ti11], A1 < Ay, and y € D,, we obtain

E(&y)(82) — E)(A)F < EN(Tq(A2 = i) = Tg(d1 — 1)) Ki(si, 85, + s) |1

Since 7 is strongly continuous, it allows us to conclude that
Tim [|7;(82 = s1) = Ty(Ar = s) |2 = 0. (13)

Equations (12) and (13) with (H9)(ii) imply that the operator & is equicontinuous on D;.
Finally, combining steps 1-4 together with Ascoli’s theorem, we conclude that the operator
&1 is completely continuous.

Step 5. The operator &, is a contraction map. For y,y* € D, and for t € (t,s;],
i=1,2,...,m,wehave

El[(&y)(1) — (&2y*) (B> = 0. (14)
Similarly, for y,y* € D, and for t € (s;,t;11],i=0,1,...,m, we have

2

BlEN®0 — E )OI < 28] [ Si—e)(Flege +50) — Flerg +5:)de

f X 2
+2E /S Syt —e)(G(e, ge +7e) —Gle, e +72))dW(e)
NzT21  NgT21-1
< 2 .2 F G )
< 2Mi@ ( P + 20-1 ly —vy ||D%
Hence,

()12 2 o NgT?  NgT*™! o

E|[(&y)(t) — (&y7)(B)[I7 < 2Mo@ 7 + 201 1y = v" 50 (15)

From above, we obtain
2 2
1€2y = &2y" g = Larlly =y lipo

Thus, &, is a contraction map. By Krasnoselskii’s fixed point theorem, we obtain that
problem (1) has at least one solution on (—co, T]. [

4. Approximate Controllability
We consider the following control system:

dW(t)
dt

te Uzmzo(si’ ti+l]/

(
), te Ulm:1 (ti/ Sl'], (16)

¢(t) € Dp.
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The control #(-) € L?(J,U), where L?(J,U) is the Hilbert space of all admissible control
functions. The operator A is linear and bounded from the separable Hilbert space ¢/ into Z.
Assume that the linear system

{cpgz(t) =Pz(t) + Ad(t), telo,T], (17)

z(t) = ¢(t), ¢(t) € Dy.

Define the operator té’l'.“ associated with system of (17) as

t;
it = [ Syt — ) AN (141 — e)de.
S

i

Here, A" and S (t) are the adjoint of A and Sy (t), respectively. The operator té’;.“ is a
bounded and linear operator.

L*(Fr, 2),

Definition 3. System (16) is approximately controllable on [0, T] if R(T,$, 1) ﬁ) =
( (7,U)}.

where R(T, ¢, 1) = {z(¢, 1) (T) : z is the solution of problem (16) and it € L?

The following assumption is needed.
[AC]: System (17) is approximate controllability on 7.
Note that system (17) is approximately controllable on 7 only if

AN ) = (AT +167) 1 = 0as A — 0. (18)
Definition 4. An Fi-adapted random process z : (—oo, T| — Z is called the mild solution of (16)

if for every t € J, z(t) satisfies zg = ¢ € Dy, z(t) = Ki(t,z¢) forall t € (t;,s;],i=1,2,...,m,
and

/ St — 0)[F(e,2¢) + A (e)]de
+ [ 8yt = 0)Gle 20V + [ (- ee)as ),
forall t € [0, 1], and
2(f) = ﬁ(t—si)lCi(si,zsi)—i—/SitSq(t—e)[]-'(e,zE)+Aﬁ(e)]de
+ [ st ogtezove + [ s -oredste, a9
forallt € (si,tia],i=1,2,...,m

Lemma 5. For any z,,, € LZ(]-‘le), there exist ¢, € LZ(Q, Lz([si, fi+1],£%(3}1,2)) and
¢2 € L*([si, tis1), L3(In, Z)) such that

i R titq %
2 =Bz + [ 0@V + [ ga(e)dBR (o)

Next, we choose the control 2 (t) as follows:

a0 (1) = A*S} (i — DAA, 7 )p(z(0)), (20)

titq
p(z(1)) =z, — To(tiva —si)Kilsi, zs,) —/s Sq(tiv1 —e)F(e z)de

i
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ti

B /ti+1 Sq(t,qu B e)g(e,ze)dW(e) B / +1 Sq(ti+1 — e)O'(e)dBr’q(é’)/

AH /5

Vie (si,tiv1], i=01,...,m,
and IC()(O, ) =0, Z(fm+1) = Zt,,4 = ZT-

Theorem 3. Assume the hypotheses (H1)-(H9) are satisfied. Then, the problem (16) has at least
one mild solution on (—oo, T|.

Proof. The proof is a consequence of Theorem 2. [

Theorem 4. Assume that the hypotheses (H1)-(H9) and [AC] are satisfied. Then functions F and
G are uniformly bounded on their respective domains. Moreover, the system (16) is approximately
controllable on [0, T].

Proof. Let z* be a fixed point of & + &. Using Fubini’s theorem, we get

2M(tig1) = 21,y — MDA )P0 (), (21)

t;
p(z()) =z, — Tyt —si)Kilsi zh) — /s b Sy(tiv1 —e)F (e, z)de
t; R t; ~
_ / Syt — )G (e, 2DV (e) / Syt — e)or(e)aB(e),

Si

Vte (Si,tiJrﬂ, i=0,1,...,m

The functions F and G are uniformly bounded. Hence, there exists a subsequence, still
represented by F (e, z2*) and G (e, z'), that weakly converge to, say, F(e) and G(e) in Z and
c;(yl, Z), respectively. Let us define

tity

o=z, — Ta(tipr —s)Ki(si, zs;) —/ Sy(tiy1 —e)F(e)de

Si

ti1 « tit1 1

— /s Sy(tiy1 —e)G(e)dW(e) — /S Sy(tiz1 —e)o(e)dB™(e),
Vte (Si/ti+1]/ i=0,1,...,m.

Fort € (s;,ti11],i=0,1,...,m, we have

Elp(z") —gll> < BE[T;(tipa — si)(Ki(si z) — Ki(si z,)) |12

[ Syt - )(Fle ) ~ Flepde

1

2
+3E

2
+3E

[ St - G e, ) — Genave)

1

By the infinite dimensional version of the Arzela-Ascoli theorem, we obtain that

() — / Sy(- — e)k(e)de
is a compact operator. For all t € [0, T},

E|p(z*) —n||* = 0as A — 0F. (22)
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By Equation (21), we get
Ellz2 (bi1) — 21, 12 < EJAAA, £57) ()2 + EAA(A, £57) [PE[ p(z) — .
By (18) and (22), we get
E|z*(tiq) — Zt; >~ 0asf — 0",
Thus, the system (16) is approximate controllable on the interval [0, T]. [

5. Example
We consider the following fractional stochastic control system:

2
‘Diy(t,z) = izy(trz) +O(tz) + [f e Dy(r,2)dr

H
ey, Z)drdW( ) 4 (s )dBdt(t)l
yG(O ), t€[21,21+1],zf0,1,...,m, (23)
y(t,z) = f_ i(r=ty(r,z)dr, t € (2i—1,2i],i=1,2,...,m

y(t,0) = 0 —y(t ),
y(t,z) = ¢(t,z), t € (—0,0],

where CD? is the Caputo derivative of order 1/2 < g < 1,0 =59 =ty < t; <51 < fp <
<ty <Sm <tpi1 =T < ocowiths; =2i, t; =2i —1.
Let Z = L2([0, 7t]) and the operator P be defined by

Pw=w", D(P) = H*0,7)NH(0,mn).

Clearly, P is the generator of an analytic semigroup {S(t) : t > 0}. The spectral representa-
tion of S(t) is given by
Jw = Z e (w, wyYwy,

neN
where
wy(y) = V2/msin(ny), n €N,
is the orthogonal set of eigenvectors corresponding to the eigenvalue A, = —n? of P. The

semigroup {S(t) : t > 0} is compact and uniformly bounded, so that R(A, P) = (Al — P)~!
is a compact operator for all A € p(P), i.e.,, P € P1(fy,wp). Let h(e) = €%, e < 0. Then
= fi)oo h(e)de = 1/2 and we define

0
I9llo, = | _h(e) sup (Ep(0))/*de, ¢ €D,

e<0<0

Hence, (t,¢) € [0, T] x Dj,. The bounded linear operator A is defined by A (t)(z) = O(t, z).
Define the functions ¥ : J xD, — 2, G : JxD, — L()1,2), and
ICl' : (tirsi] XDy — Z as

FeoE = |
0
G(t,9)2) = [ Mp(O)()ae,

Ki(t,¢)(z) =
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Assume that .
2
Aﬂdm%@<w

The system (23) can be written as an abstract formulation of (1), and thus previous theorems
can be applied to guarantee both existence and approximate controllability results.

6. Conclusions

We have investigated impulsive fractional stochastic control systems defined on sep-
arable Hilbert spaces. The proposed problem is driven by mixed noise, i.e., it involves
both a Q-Wiener process and a Q-fractional Brownian motion with the Hurst parameter
# € (1/2,1). For our results, we have mainly applied fixed point techniques, a g-resolvent
family, and fractional calculus. The obtained results are supported by an illustrative ex-
ample. As further directions of investigation and continuation to this work, it would be
interesting to investigate the sensitivity on the noise range and develop numerical and
computational methods to approximate the solution. We also intend to extend our results
via discrete fractional calculus.
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