On the Global Nonexistence of a Solution for Wave Equations with Nonlinear Memory Term
Abstract
:1. Introduction Setting
2. Preliminaries, Materials, and Methods
2.1. Solving the Wave Equation
2.2. The Well-Posedness of the Wave Equation
3. First Main Result: Local Existence
4. Second Main Result: Blowing-Up
5. Conclusions and Relevance of the Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Abbicco, M. The influence of a nonlinear memory on the damped wave equation. Nonlinear Anal. Theory Meth. Appl. 2014, 95, 130–145. [Google Scholar] [CrossRef]
- D’Abbicco, M. A wave equation with structural damping and nonlinear memory. Nonlinear Differ. Equ. Appl. 2014, 21, 751–773. [Google Scholar] [CrossRef]
- Fang, D.; Lu, X.; Reissig, M. High-order energy decay for structural damped systems in the electromagnetical field. Chin. Ann. Math. 2010, 31, 237–246. [Google Scholar] [CrossRef]
- Ikehata, R.; Natsume, M. Energy decay estimates for wave equations with a fractional damping. Differ. Integral Equ. 2012, 25, 939–956. [Google Scholar] [CrossRef]
- Dannawi, I.; Kirane, M.; Fino, A.Z. Finite time blow-up for damped wave equations with space–time dependent potential and nonlinear memory. Nonlinear Differ. Equ. Appl. 2018, 25, 38. [Google Scholar] [CrossRef]
- Berbiche, M.; Hakem, A. Finite time blow-up of solutions for damped wave equation with nonlinear memory. Commun. Math. Anal. 2013, 14, 72–84. [Google Scholar]
- Kaddour, T.H.; Reissig, M. Blow-up results for effectively damped wave models with nonlinear memory. Commun. Pure Appl. Anal. 2021, 20, 2687–2707. [Google Scholar] [CrossRef]
- Chen, C.; Palmieri, A. Blow-up Result for a Semilinear Wave Equation with a Nonlinear Memory Term. Anomalies Part. Diff. Equ. 2021, 43, 77–97. [Google Scholar]
- Andrade, B.D.; Tuan, N.H. A Non-autonomous Damped Wave Equation with a Nonlinear Memory Term. Appl. Math. Optim. 2020, 85, 1–20. [Google Scholar] [CrossRef]
- Miyasita, T.; Zennir, K. Finite time blow-up for a viscoelastic wave equation with weak-strong damping and power nonlinearity. Osaka J. Math. 2021, 58, 661–669. [Google Scholar]
- Zennir, K.; Svetlin, G. New results on blow-up of solutions for Emden-Fowler type degenerate wave equation with memory. Bol. Soc. Paran. Mat. 2021, 39, 163–179. [Google Scholar] [CrossRef]
- Hebhoub, F.; Zennir, K.; Miyasita, T.; Biomy, M. Blow up at well defined time for a coupled system of one spatial variable Emden-Fowler type in viscoelasticities with strong nonlinear sources. AIMS Math. 2021, 6, 442–455. [Google Scholar] [CrossRef]
- Zennir, K.; Miyasita, T.; Papadopoulos, P. Local existence and global nonexistence of a solution for a Love equation with infinite memory. J. Integral Equ. Appl. 2021, 33, 117–136. [Google Scholar] [CrossRef]
- Ouchenane, D.; Zennir, K.; Bayoud, M. Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms. J. Integral Equ. Appl. 2013, 64, 723–739. [Google Scholar] [CrossRef]
- Dridi, H.; Zennir, K. New Class of Kirchhoff Type Equations with Kelvin- Voigt Damping and General Nonlinearity: Local Ex- istence and Blow-up in Solutions. J. Part. Diff. Equ. 2021, 34, 313–347. [Google Scholar]
- Laouar, L.K.; Zennir, K.; Boulaaras, S. The sharp decay rate of thermoelastic transmission system with infinite memories. Rend. Circ. Mat. Palermo II Ser. 2020, 69, 403–423. [Google Scholar] [CrossRef]
- Feng, B.; Pelicer, M.L.; Andrade, D. Long-time behavior of a semilinear wave equation with memory. Bound. Value Probl. 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Berkeley, CA, USA, 2022; Volume 19. [Google Scholar]
- Arbogast, T.; Bona, J.L. Methods of Applied Mathematics, Lecture Notes in Applied Mathematics. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, 2008. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Choucha, A.; Ouchenane, D.; Zennir, K. Exponential growth of solution with Lp-norm for class of non-linear viscoelastic wave equation with distributed delay term for large initial data. Open J. Math. Anal. 2020, 3, 76–83. [Google Scholar] [CrossRef]
- Choucha, A.; Ouchenane, D.; Zennir, K. General Decay of Solutions in One-Dimensional Porous-Elastic with Memory and Distributed Delay Term. Tamkang J. Math. 2021, 52, 1–17. [Google Scholar] [CrossRef]
- Zennir, K. Stabilization for Solutions of Plate Equation with Time-Varying Delay and Weak-Viscoelasticity in Rn. Russ. Math. 2020, 64, 21–33. [Google Scholar] [CrossRef]
- Bahri, N.; Abdelli, M.; Beniani, A.; Zennir, K. Well-posedness and general energy decay of solution for transmission problem with weakly nonlinear dissipative. J. Integral Equ. Appl. 2021, 33, 155–170. [Google Scholar] [CrossRef]
- Moumen, A.; Beniani, A.; Alraqad, T.; Saber, H.; Ali, E.E.; Bouhali, K.; Zennir, K. Energy decay of solution for nonlinear delayed transmission problem. AIMS Math. 2023, 8, 13815–13829. [Google Scholar] [CrossRef]
- Doud, N.; Boulaaras, S. Global existence combined with general decay of solutions for coupled Kirchhoff system with a distributed delay term. Rev. Real Acad. Cienc. Exactas Físicas y Nat. Ser. A Mat. 2020, 114, 1–31. [Google Scholar] [CrossRef]
- Laouar, L.K.; Zennir, K.; Boulaaras, S. General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity. Math. Meth. Appl. Sci. 2019, 42, 4795–4814. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reda, S.B.; Memou, A.; Berkane, A.; Himadan, A.; Moumen, A.; Saber, H.; Alraqad, T. On the Global Nonexistence of a Solution for Wave Equations with Nonlinear Memory Term. Fractal Fract. 2023, 7, 788. https://doi.org/10.3390/fractalfract7110788
Reda SB, Memou A, Berkane A, Himadan A, Moumen A, Saber H, Alraqad T. On the Global Nonexistence of a Solution for Wave Equations with Nonlinear Memory Term. Fractal and Fractional. 2023; 7(11):788. https://doi.org/10.3390/fractalfract7110788
Chicago/Turabian StyleReda, Soufiane Bousserhane, Amer Memou, Abdelhak Berkane, Ahmed Himadan, Abdelkader Moumen, Hicham Saber, and Tariq Alraqad. 2023. "On the Global Nonexistence of a Solution for Wave Equations with Nonlinear Memory Term" Fractal and Fractional 7, no. 11: 788. https://doi.org/10.3390/fractalfract7110788
APA StyleReda, S. B., Memou, A., Berkane, A., Himadan, A., Moumen, A., Saber, H., & Alraqad, T. (2023). On the Global Nonexistence of a Solution for Wave Equations with Nonlinear Memory Term. Fractal and Fractional, 7(11), 788. https://doi.org/10.3390/fractalfract7110788