On Coefficient Inequalities of Starlike Functions Related to the q-Analog of Cosine Functions Defined by the Fractional q-Differential Operator
Abstract
:1. Introduction and Preliminaries
- To introduce a novel class of q-starlike functions which are subordinated by q-cosine function.
- To find the sharp coefficient bounds for functions of class .
- To establish the Zalcman inequalities for functions of class .
- To find the upper bounds of Hankel and Toeplitz determinants for .
2. A Set of Lemmas
3. Main Results and Their Demonstration
4. Zalcman and Generalized Zalcman Conjecture
5. Hankel Determinants
6. Toeplitz Determinant
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhauser/Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.G.; Cheung, P. Quantum Calculus; Universitext; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Generalized Ulam-Hyers stability for fractional differential equations. Int. J. Math. 2012, 23, 1250056. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete-Szegö problem for a subclass of close-to-convex functions. Complex Var. Theory Appl. 2001, 44, 145–163. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, 2011, 107384. [Google Scholar] [CrossRef]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Ibrahim, R.W. On holomorphic solutions for nonlinear singular fractional differential equations. Comput. Math. Appl. 2011, 62, 1084–1090. [Google Scholar] [CrossRef]
- Ibrahim, R.W. On solutions for fractional diffusion problems. Electron. J. Differ. Equ. 2010, 147, 1–11. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Taj, Y.; Zainab, S.; Xin, Q.; Tawfiq, F.M.O.; Raza, M.; Malik, S.N. Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Coefficients and Hankel Determinants of Univalent Functions. J. Lond. Math. Soc. 1966, s1-41, 111–122. [Google Scholar] [CrossRef]
- Sim, Y.J.; Lecko, A.; Thomas, D.K. The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Ann. Mat. Pura Appl. 2021, 200, 2515–2533. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kaur, G.; Singh, G. Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains. J. Nonlinear Convex Anal. 2021, 22, 511–526. [Google Scholar]
- Ye, K.; Lim, L.-H. Every matrix is a product of Toeplitz matrices. Found. Comput. Math. 2016, 16, 577–598. [Google Scholar] [CrossRef]
- Babalola, K.O. On H3,1 Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Arif, M.; Ullah, I.; Raza, M.; Zaprawa, P. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings. Math. Slovaca 2020, 70, 319–328. [Google Scholar] [CrossRef]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef]
- Caglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation. J. Complex Anal. 2016, 4, 4960704. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequalities Pure Appl. Math. 2006, 7, 50. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 13, 619–625. [Google Scholar]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107. [Google Scholar] [CrossRef]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequalities Appl. 2013, 1, 281. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, H.; Ma, L.N. Upper bound of third Hankel determinant for a class of analytic functions. Pure Appl. Math. 2017, 33, 211–220. [Google Scholar]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequalities Appl. 2012, 1, 8. [Google Scholar] [CrossRef]
- Shi, L.; Ali, I.; Arif, M.; Cho, N.E.; Hussain, S.; Khan, H. A Study of Third Hankel Determinant Problem for Certain Subfamilies of Analytic Functions Involving Cardioid Domain. Mathematics 2019, 7, 418. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, H. A study of fourth-order Hankel determinants for starlike functions connected with the sine function. J. Funct. Spaces 2021, 2021, 9991460. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with Three-Leaf function. Heliyon 2023, 9, e12748. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M. The third Hankel determinant for starlike and convex functions associated with lune. Bull. Des Sci. MathéMatiques 2023, 183, 103289. [Google Scholar] [CrossRef]
- Wang, Z.G.; Arif, M.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutaywi, M. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. 2023, 13, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Deniz, E.; Kazımoğlu, S.; Srivastava, H.M. Sharp coefficients bounds for Starlike functions associated with Gregory coefficients. arXiv 2023, arXiv:2306.02431v1. [Google Scholar]
- Marımuthu, K.; Uma, J.; Bulboaca, T. Coefficient estimates for starlike and convex functions associated with cosine function. Hacet. J. Math. Stat. 2023, 52, 596–618. [Google Scholar]
- Li, Z.; Guo, D.; Liang, J. Hankel Determinant for a Subclass of Starlike Functions with Respect to Symmetric Points Subordinate to the Exponential Function. Symmetry 2023, 15, 1604. [Google Scholar] [CrossRef]
- Tang, H.; Arif, M.; Abbas, M.; Tawfiq, F.M.O.; Malik, S.N. Analysis of Coefficient-Related Problems for Starlike Functions with Symmetric Points Connected with a Three-Leaf-Shaped Domain. Symmetry 2023, 15, 1837. [Google Scholar] [CrossRef]
- Tang, H.; Khan, H.; Hussain, S. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. Mathematics 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Srivastava, R.; Tang, H. Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef]
- Ramachandran, C.; Annamalai, S. On Hankel and Toeplitz determinants for some special class of analytic functions involving conical domains defined by subordination. Int. Eng. Res. Technol. 2016, 5, 553–561. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinants for the class SL. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 2018, 55, 1859–1868. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Smiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2021, 34, 188. [Google Scholar] [CrossRef]
- Rahman, I.A.R.; Atshan, W.G.; Oros, G.I. New Concept on Fourth Hankel Determinant of a Certain Subclass of Analytic Functions. Afr. Mat. 2022, 33, 7. [Google Scholar] [CrossRef]
- Breaz, V.D.; Catas, A.; Cotîrla, L. On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function. Analele Stiintifice Univ. Ovidius Constanta 2022, 30, 75–89. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Li, S.H.; Deng, G.T. Majorization Results for Subclasses of Starlike Functions Based on the Sine and Cosine Functions. Bull. Iran. Math. Soc. 2020, 46, 381–388. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983; Volume 259. [Google Scholar]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Somerville, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef]
Author/s | Type of Starlike Functions | Sharp Bound | Reference |
---|---|---|---|
Riaz et al. | subordinated by | 1/225 | [33] |
Riaz and Raza | subordinated by | 1/9 | [34] |
Wang et al. | subordinated by | 1/9 | [35] |
Deniz et al. | subordinated by | 43/576 | [36] |
Marimuthu et al. | subordinated by | 139/576 | [37] |
Li et al. | symmetric connected with | 0.0883 | [38] |
exponential function | |||
Tang et al. | symmetric, subordinated by | 0.047 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taj, Y.; Malik, S.N.; Cătaş, A.; Ro, J.-S.; Tchier, F.; Tawfiq, F.M.O. On Coefficient Inequalities of Starlike Functions Related to the q-Analog of Cosine Functions Defined by the Fractional q-Differential Operator. Fractal Fract. 2023, 7, 782. https://doi.org/10.3390/fractalfract7110782
Taj Y, Malik SN, Cătaş A, Ro J-S, Tchier F, Tawfiq FMO. On Coefficient Inequalities of Starlike Functions Related to the q-Analog of Cosine Functions Defined by the Fractional q-Differential Operator. Fractal and Fractional. 2023; 7(11):782. https://doi.org/10.3390/fractalfract7110782
Chicago/Turabian StyleTaj, Yusra, Sarfraz Nawaz Malik, Adriana Cătaş, Jong-Suk Ro, Fairouz Tchier, and Ferdous M. O. Tawfiq. 2023. "On Coefficient Inequalities of Starlike Functions Related to the q-Analog of Cosine Functions Defined by the Fractional q-Differential Operator" Fractal and Fractional 7, no. 11: 782. https://doi.org/10.3390/fractalfract7110782
APA StyleTaj, Y., Malik, S. N., Cătaş, A., Ro, J. -S., Tchier, F., & Tawfiq, F. M. O. (2023). On Coefficient Inequalities of Starlike Functions Related to the q-Analog of Cosine Functions Defined by the Fractional q-Differential Operator. Fractal and Fractional, 7(11), 782. https://doi.org/10.3390/fractalfract7110782