New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akdemir, A.O.; Karaoǧlan, A.; Ragusa, M.A.; Set, E. Fractional integral inequalities via Atangana-Baleanu Operators for convex and concave functions. J. Funct. Spaces 2021, 2021, 1055434. [Google Scholar] [CrossRef]
- Ali, M.A.; Goodrich, C.S.; Budak, H. Some new parametrized Newton-type inequalities for differentiable functions via fractional integrals. J. Inequal. Appl. 2023, 2023, 49. [Google Scholar] [CrossRef]
- Butt, S.S.; Yousaf, S.; Akdemir, A.O.; Dokuyucu, M.A. New Hadamard-type integral inequalities via a general form of fractional integral operators. Chaos Solitons Fractals 2021, 148, 111025. [Google Scholar]
- Chu, Y.-M.; Awan, M.U.; Javad, M.Z.; Khan, A.G. Bounds for the remainder in Simpsons inequality via n-convex functions of higher order using Katugampola fractional integrals. J. Math. 2020, 2020, 4189036. [Google Scholar] [CrossRef]
- Guzman, P.M.; Valdes, J.E.N.; Gasimov, Y.S. Integral inequalities within the framework of generalized fractional integrals. Fract. Differ. Calc. 2021, 11, 69–84. [Google Scholar] [CrossRef]
- Kermausuor, S.; Nwaeze, E.R. New midpoint and trapezoidal-type inequalities for prequasiinvex functions via generalized fractional integrals. Stud. Univ.-Babes-Bolyai Math. 2022, 67, 677–692. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, C.; Du, T.S. Riemann–Liouville fractional Simpson’s inequalities through generalized (m,h1,h2)-preinvexity. Ital. J. Pure Appl. Math. 2017, 38, 345–367. [Google Scholar]
- Sanli, Z. Simpson type Katugampola fractional integral inequalities via Harmonic convex functions. Malaya J. Mat. 2022, 10, 364–373. [Google Scholar] [CrossRef]
- Yu, Y.; Lei, H.; Du, T. Estimates of upper bounds for differentiable mappings related to Katugampola fractional integrals and p-convex mappings. AIMS Math. 2021, 64, 3525–3545. [Google Scholar] [CrossRef]
- Ali, M.A.; Kara, H.; Tariboon, J.; Asawasamrit, S.; Budak, H.; Heneci, F. Some new Simpson’s-formula-type inequalities for twice differentiable convex functions via generalized fractional operators. Symmetry 2021, 13, 2249. [Google Scholar] [CrossRef]
- Bibi, M.; Muddasar, M. Hermite–Hadamard type fractional integral inequalities for strongly generalized-prequasi-invex function. Int. J. Nonlinear Anal. Appl. 2022, 13, 515–525. [Google Scholar]
- Bohner, M.; Khan, A.; Khan, M.; Mehmood, F.; Shaikh, M.A. Generalized perturbed Ostrowski-type inequalities. Ann. Univ. Mariae-Curie-Sklodowska Sect. A Math. 2022, 75, 13–29. [Google Scholar] [CrossRef]
- Du, T.; Yuan, X. On the parametrized fractional integral inequalities and related applications. Chaos, Solitons & Fractals 2023, 170, 113375. [Google Scholar]
- Farid, G. Some Riemann–Liouville fractional integral inequalities for convex functions. J. Anal. 2019, 27, 1095–1102. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Ain, Q.U. k fractional inequalities of Hadamard type for (h, k)-convex functions. Computat. Methods Differ. Equ. 2020, 8, 119–140. [Google Scholar]
- Hussain, S.; Azhar, F.; Latif, M.A. Generalized fractional Ostrowski type integral inequalities for logarithmically h-convex function. J. Anal. 2021, 29, 1265–1278. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Brevik, I. A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 2019, 12, 610. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Khan, S. Fractional Hermite–Hadamard inequalities for some new classes of Godunova–Levin functions. Appl. Math. Inf. Sci. 2014, 8, 2865–2872. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Kermausuor, S.; Tameru, A.M. Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus μ ≥ 0. J. Inequal. Appl. 2018, 2018, 139. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for functions pertaining to Caputo-Frabrizio Operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Zabandan, G.; Bodaghi, A.; Kiliçman, A. The Hermite–Hadamard inequality for r-convex functions. J. Inequal. Appl. 2012, 2012, 215. [Google Scholar] [CrossRef]
- Hadamard, J. Etude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Wu, S.; Iqbal, S.; Aamir, M.; Samraiz, M.; Younus, A. On some Hermite–Hadamard inequalities involving k-fractional operators. J. Inequal. Appl. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
- Miller, S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Willey & Sons: Hoboken, NJ, USA, 1993; p. 2. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and applications. Int. J. Contem. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel. Therm. Sci. 2016, 20, 763–769. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new local fractional derivative with Mittag–Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef]
- Fernandez, A.; Mohammed, P. Hermite–Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels. Math. Meth. Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
- Kashuri, A. Hermite–Hadamard type inequalities for the ABK-fractional integrals. J. Comput. Anal. Appl. 2021, 29, 309–326. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kermausuor, S.; Nwaeze, E.R. New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators. Fractal Fract. 2023, 7, 740. https://doi.org/10.3390/fractalfract7100740
Kermausuor S, Nwaeze ER. New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators. Fractal and Fractional. 2023; 7(10):740. https://doi.org/10.3390/fractalfract7100740
Chicago/Turabian StyleKermausuor, Seth, and Eze R. Nwaeze. 2023. "New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators" Fractal and Fractional 7, no. 10: 740. https://doi.org/10.3390/fractalfract7100740
APA StyleKermausuor, S., & Nwaeze, E. R. (2023). New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators. Fractal and Fractional, 7(10), 740. https://doi.org/10.3390/fractalfract7100740