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Abstract: We propose the definitions of some fractional integral operators called k-Atangana-Baleanu
fractional integral operators. These newly proposed operators are generalizations of the well-known
Atangana-Baleanu fractional integral operators. As an application, we establish a generalization
of the Hermite-Hadamard inequality. Additionally, we establish some new identities involving
these new integral operators and obtained new fractional integral inequalities of the midpoint and
trapezoidal type for functions whose derivatives are bounded or convex.
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1. Introduction

Integral inequalities play an indispensable role in mathematical analysis due to their
innumerable applications in the analysis of differential equations and approximation the-
ory, amongst others. Several integral inequalities for functions of single variables under
various conditions have been established in the literature. Fractional calculus and convex
functions have been found to play a fundamental role in the study of integral inequal-
ities in recent years. A great number of researchers have established several integral
inequalities under conditions of convexity and its generalizations by utilizing various
fractional integral operators. For example, Akdemir et al. established some fractional
integral inequalities of the Hermite-Hadamard type for convex and concave functions
via the Atagana—Baleanu fractional integral operators in [1], and Ali et al. obtained some
parametrized Newton-type inequalities for convex functions using the Riemann-Liouville
fractional integrals in [2]. In [3], Butt et al. provided some Hermite-Hadamard-type integral
inequalities for convex functions using the ABK-fractional integral operators, and in [4],
Chu et al. established some Simpson’s type inequalities for n-polynomial convex functions
using the Katugampola fractional integrals. Using some generalized fractional integrals
by Guzman et al., some Hermite-Hadamard-type inequalities for convex functions were
present in [5], and some midpoint-type and trapezoidal-type inequalities for prequasiinvex
functions via the Katugampola fractional integrals were provided by Kermausuor and
Nwaeze in [6]. Peng et al. established some Simpson’s type inequalities for generalized
(m, hy, hy)-preinvex functions by utilizing the Riemann-Liouville fractional integral opera-
tors in [7], and Sanli provided some Simpson’s type inequalities for harmonically convex
functions via the Katugampola fractional integrals in [8]. In [9], Yu et al. established some
Ostrowski-type integral inequalities for p-convex functions by utilizing the Katugampola
fractional integral operators, and Zabandan et al. established some integral inequalities
of the Hermite-Hadamard type for r-convex functions. For more information about the
results mentioned above and other related results, we invite the interested reader to see the
papers in [1-22] and the references therein.

The aforementioned results are established via the convexity of the function involved.
For this purpose, it is natural to start by first presenting the definition of a convex function.
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Definition 1. A function J : I — R is convex on the interval I if
TAr+ 1 =A)r2) AT (1) + (1 =A)T(72)
forall 1, v2 € ILand A € [0,1].

The double inequality below holds for convex functions and is known in the literature
as the Hermite-Hadamard inequality.

Theorem 1 ([23]). If J : I — R is a convex function, then the double inequality:

11+ 72 1 72 J (1) + T (72)
j( 2 )SW’M [n j(s)dsgf g

holds for all 1, y2 € I with 1 < 7.

The Hermite-Hadamard inequality has been one of the most studied integral inequal-
ities. Several generalizations of this inequality have been introduced in the literature in
recent years. For instance, in [21], Sarikaya et al. established the following generalization of
the Hermite-Hadamard inequality by utilizing the Riemann-Liouville fractional integrals
defined in Definition 2.

Theorem 2. If J : [d1,dy| — R is a positive and convex function on [dy,dy] with dq < dp and
J € Li([d1,dz]), then the inequalities:

T (B5%) < e [ gt + 5 (] < LI

hold for all « > 0, where I denotes the gamma function, and I ;‘+ J and I 5, J, respectively, denotes
1 2
the left- and right-sided Riemann—Liouville fractional integrals of J of order a defined in Definition 2.

Similarly, in [24], Wu et al. obtained a generalization of the Hermite-Hadamard
inequality by utilizing the k-Riemann-Liouville fractional integrals defined in Definition 3
as follows.

Theorem 3. If 7 : [d1,d2] — R is a positive and convex function on [dq,dy| with d; < dp and
J € Ly([d1,dz)]), then the inequalities:

dy+d Ie(a+k) N . T(d) + T (d)
J( 1+ 2) < 2(22_d1)% 1t 7 (o) + 4y 7 (dy)| < ST I

hold for all o,k > O, where I'y denotes the k-gamma function, and kL3 T and ( 15_J denotes the
1 2
left- and right-sided k-Riemann—Liouville fractional integrals of J of order a defined in Definition 3.

The Riemann-Liouville and k-Riemann-Liouville fractional integrals are defined as
follows.

Definition 2 ([25-27]). The left- and right-sided Riemann—Liouville fractional integrals of a
real-valued function J of order & > 0 are given by

I(0) = 1 /A(/\ — )T (w)du

T(a) Ja,
and
1 [
T = gy i = AT ()i,
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7

di+dy

where T is the gamma function given by

I'(v) ::/ u'"le™"du, Re(v) > 0.
0

Definition 3 ([28]). The left- and right-sided k-Riemann—Liouville fractional integrals of a real-
valued function J of order « > 0 are given by

elgy TA) = krkl(rx) /dj()\ — W
and
Kl T(A) = kl”;@c) /Adz(” — A)E1T (w)du,

where T is the k-gamma function presented by Diaz et al. [29] as
k

Ty (v) ::/0 u'~le~Fdu, Re(v) > 0.

Recently, Atangana and Baleanu introduced a fractional integral which is known in
the literature as the left-sided Atangana—Baleanu fractional integral defined below.

Definition 4 ([30]). The left-sided Atangana—Baleanu fractional integral of a real-valued function
J of order « € (0,1) is given by

« /)‘
B(a)T(«) Jay
where B(«) > 0 and satisfies the property B(0) = B(1) = 1.

1 _
PLLTN) = 5= T () +

Ba) (A —w)* 1T (u)du,

In [31], Abdeljawad and Baleanu introduced the right-sided version of the Atangana-
Baleanu fractional integral as follows:

_1—04 ®

P I = 5 YD 5t /A'“’Z(uf R

By utilizing the Atangana—Baleanu fractional integral operators, Fernandez and Mo-
hammed [32] established the following generalization of the Hermite—-Hadamard inequality.

Theorem 4. If J : [d1,dp] — Ris convex on [dy,dp) and J € L1([dy,d3]), then the inequalities

Bl (a) L Tdh) + T (d)

2

)<

2[(dy — dr)* + (1 — a)T(a)] |AP18. 7 (dg) + 4215 T ()| < !

hold for « € (0,1).

In [33], Kashuri introduced some fractional integral operators called the ABK-fractional
integral operators, which are generalizations of the Atangana—Baleanu fractional operators,
and presented the Hermite-Hadamard inequality for these fractional integral operators in
the following:
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Definition 5. The left- and right-sided ABK-Atangana—Baleanu fractional integral operators of a
real-valued function J of order v € (0,1) are given by

ABKP v 1w o'y A el
TN = Gy T W+ 50w e gy W A > dy
and
ABKP v _1-v olvy pd el
2 WM = ey TN+ 505w I (wr —poyi—vd (W, A<y,

where p > 0 and B(v) > 0 satisfies the property B(0) = B(1) = 1.

Theorem 5. Let v € (0,1) and p > 0. Let J : [df,d5] — Rwith 0 < dy < dy be a convex
function. Then the following inequalities for the ABK-fractional integrals hold:

2 dP _ dP v dP dP _
B(V)(I"(ZV + 11))p2p‘7< : _; 2) + 13(1/1)/ [j(dllj) + j(dg)}

ABKpP 4 ABKp 0

_ (d5 —df)" +p(1—v)T(v)
pB(v)I'(v)

) (7@ +T@)].

Driven by the ongoing research work on fractional integrals and the crucial role they
play in the study of fractional integral inequalities, our aim in this paper is to propose novel
definitions of some generalized fractional integral operators called k-Atangana—Baleanu
fractional integral operators. As an application, we will establish the Hermite-Hadamard
inequality and some new fractional integral inequalities by using these new operators. Our
main results are presented in Section 2, followed by a conclusion in Section 3.

2. Main Results

We begin by providing the definition of the new fractional integrals that presents a
generalization of the Atangana-Baleanu fractional integrals.

Definition 6. The left- and right-sided k-Atangana—Baleanu fractional integral operators of a
real-valued function J of order & > 0, are defined as

_ A .
AT = 58 L AT, A4

kB(«)T d

and

" 11—« ® dy .
ABIE T(A) = B I+ W/A (u—)E 1T (w)du, A <dy,

where k > 0 and B(«) > 0 satisfies the property B(0) = B(1) = 1.
Remark 1. If k = 1 in Definition 6, then we have the Atangana—Baleanu fractional integral operators.

Next, we study the Hermite-Hadamard inequality by utilizing the k-Atangana-
Baleanu fractional integral operators.
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Theorem 6. Let 7,0 € R with v < 0 and J : [y,0] — R be a convex function. Then
the inequalities

0+ B(“)rk(a) AB qa AB ta
J< 2 > = 20 —1)F + (1 —a)Te(a)] 4l T (0) + 4245 T ()]
AV ;J(f?) "

hold for all k > 0 and « € (0,1).

Proof. Under the condition of convexity of 7 on [y, 6], it follows that for any uy, uy € [, 6]

j<u1 +u2) _ Jln)+ T (w)

2 )= 2 ©)

If we take 7 = A0 + (1 — A)yand up = (1 —A)0 + Ay for A € [0,1] in (3), then we obtain
27 ("

Multiply (4) by ————— B (oc) n ) A~ 1and integrate both sides of the resulting inequality with

respect to A over [0, 1] to obtain

I\J+
\>

) S T00+ A= 2)7)+ T(@ - Ne+ 1) @

2 oty i —
BT ( 2 )<kB( / AFTLT (A8 + (1= A)y)dA

+ BEnE /o M (- 2)8+ Amar
o

_ 6 e
_kB(a)rk([x)(g_v)ﬂ;/W(g u) k= (u)du

o 0 i o1
+kB(a)Fk(a)(97)iL(U Yk T (v)dv.  (5)

Using Definition 6 and (5), we obtain

2(9—7)kj<9+7) + L8 7+ 7(0)]

B(a)Ty(a) 2 B(«)
<AL T(0) + APilg- T (7). ©6)
Now, since J is convex, we have that J (9 —12- ’Y) < J(0) "2' J (’Y) Hence, from (6),
we have
20—7)F  2(1—a) 0+ o -
[B(“)Fk(lx) - B(«) ]‘7< 2 ) <AL T(0) + Pl T (7). @)

By rearranging the terms in (7), we obtain the first inequality in (2). To prove the
second inequality, we note that if 7 is convex, then for A € [0, 1], we have

TJA0+(1=A)y) <ATO)+(1—-A)T(7) ®)
and

J((1=A)0+Ay) < (1-1)T(6) + AT (7). ©)
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Adding (8) and (9), we obtain

TJA0+(1=N)7)+T (1 =10+ A7) < T(7)+T(6). (10)

Multiply (10) by m/\% ~! and integrate both sides of the resulting inequality with

respect to A over [0, 1] to obtain
r //\ LTA0+ (1= A+ e /A “L7((1 = A)0 + Ay)dA
k

<W[j( 7)+ T (0)]. (11)

By using change of variables like in the proof of the first inequality and Definition 6, we
deduce from (11) that

o o (9 — 7)% -«
P T O+ BT () < g T F T@O1+ 55 [T () + T )]
20—t 20-0)] T+ T6)
O OR 2 (12

Thus, the second inequality in (2) is obtained by rearranging the terms in (12). Hence the
proof is complete. [J

Remark 2. Ifk = 1in Theorem 6, then we have the Hermit—Hadamard inequality via the Atangana—
Baleanu fractional integrals as stated in Theorem 4.

In what follows, we present some novel inequalities of the midpoint type and trape-
zoidal type for functions with bounded derivatives and functions with convex derivatives in
absolute value by utilizing the k-Atangana—Baleanu fractional integrals. To do this, we first
establish the following crucial identities involving k-Atangana—Baleanu fractional integrals.

Lemma 1. Let y,0 € Rwithy < 0and J : [y,0] — R be a function. If J is differentiable and
J'" € Li([v,0]), then the equality

((9 )k rk(l - 06)&(%)) J()+J6) {AB,(I;&j(e) + ABkIé;iJ(v)}

(a) B(«)
e .
- (Be(a)’l% /01[(1 —A)F = AR)T (Ay + (1= A)0)dA (13)

holds for all w,k > 0.

Proof. Using integration by parts, we obtain

[a-ntr e+ a-em

(- A)F ! w 1 .

= e T2 7,<(9_7)_/0 (1= )T (A + (1= A)8)dA
1 ® 1 a_

= 5= 70 gy ) A= NI O+ (-8

= L\7(9) - L/G(G—u)%*lj(u)du

Y k(6 —y)Ft1 Jy
1 _ B(D‘ rk(“ AB qu

~7 7O T~ 5y o))
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Thus,
1 o
/(1—Aﬁj%kw+ﬂ—AWMA
0
_ 1 B(@)Tk(a) [4B qa 1w
=0 (9) 0 ’y)%H k17+j(9) Ba) J(0)]. (14)
By a similar argument, we deduce that
1 &
/tﬂTM7+O—AWMA
0
_ 1 B(@)Ty(a) [4B qa 1-a
- 9_,)/&7(7)+(9_7)%+1 kIG*j( ) B(Oé) \7(’7) . (15)
The desired identity in (13) is obtained if we multiply the identities in (14) and (15) by

ABkIEx

|

_ (60—
~ B(a)Tg(a)

B(

(0 —7)k+!
B(a)Ti(w) *
0

and take the difference between the resulting equations.

Lemma 2. Lety,0 € Rwithy < Qand J : [,
J'" € Li([v,0)), then the equality

0] — R be a function. If J is differentiable and

7+9)+t7(9) +ABkIl(x7+9) j(')/)}
B 0 — ﬂ% 0+v\ 1—ua
(st (5) i 7))

£+ . ;
pyEt { 01/2Mj,(}w+(1A)g)d)\/lizgA)kj(/WJr(l )B)d/\}

(16)
holds for all o,k > 0.

Proof. Using integration by parts, we obtain

172,
A AL (by + (1 — A)6)dA

AR

7795()\7—%(1
1

ol
1 )j<

2k(y -0
(

1/2
—A)f)

)
)

v+ 6
)+

T Ay + (1= 21)0)dA

172,
w / ye
0 k(y—0) Jo

/2
_ a / Akl
k(v—6) Jo
0

s

2

{A3k1?7§9>+‘7(9>'_

v+6
2

T (Ay + (1= 1)8)dA

»\S?

14

)kt
B(a)Ly(
(6 —7)k+!

(0 —u) k1T (u)du

1
2k(0 —

>T‘\§

So,
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Similarly,

/11 (1= M)ET (Ay + (1 A)8)dA

/2
(1—A)k 1 N 1 .
=—77J( 1—-A)0 - 1-A A 1—-A)0)dA
Y6 T Ay +( ))1/2 k(e—’)’)/l/z( VETLT (A + ( )0)
_ 1 Y+0\  w Lo e -
C2h(e— 7)‘7( 2 ) k(9—7)./1/2(1 A ELT(Ay + (1= A)0)dA
1 ’Y+9) w =5 . q
pr— x _— - . d
2k(9—7)j( 2 k(g_,y)%-&-l /7 (u =)k T (u)du
_ 1 Y460\  B(a)lk(w) [AB . 1—a }
B 2% (0 — 7)“7( 2 > (6 7)EH kl(we)fj(’Y) B(oc)j(’)/)
So,
1
/1/2(1—A)%J'(A7+(1—A)9)dA
= 1 r+0 B()k()[AB " 1-a }
k(- y)j( 2 > (0 — )t Kl T = gy I |- 09
The desired identity in (16) is obtained if we multiply the identities in (17) and (18) by
(60—t

and take the difference between the resulting equations. O

B(a)Ti(a) ’
Using Lemma 1, we obtain the following trapezoidal type inequalities.
Theorem 7. If J satisfies the conditions of Lemma 1 and J' is bounded, that is, ||J'||e =

sup |J'(x)| < oo, then the inequality
x€[v,0]

‘ ((e — )t Eﬁa_ a>rk<a>> 7(1) (+)~7 ©) _ [a812, 7(0) + 45157 ()]

k(6N T [, 1
= T RBT () (1 2%> 1)

holds for all o,k > 0.

Proof. By taking the absolute value on both sides of the identity in (13) and using the
boundedness of 7/, we obtain

‘ <(9 Y- ;-k(l - a)Fk(Dé)> J()+J(0) (48,12, 7 (6) +

(@) B(®) "I (7]

41 /
S (9 r)/ k ||‘7H°°/ | % ?|d)\ (20)

Now, we observed that for A € [0,1],

>0 for A€0,1/2]

(1—A)k — A%
<0 for A€ (1/2,1]

and hence

‘1 o 4 12 4 [14 1 [14 [14
/ |(17A)?7/\%|d/\:/ (1—/\)%—A?d)\+// Py SEE Y )
JO 0 J1/2
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2 1
== (1-=). 21
¥ t1 ( 2k ) =
The desired inequality in (19) follows by substituting (21) in (20). O

Theorem 8. If J satisfies the conditions of Lemma 1 and J' is convex on [y, 0], then the inequality
0—1i+(1—a)(a)\ T() +T(6) _[AB a AB qa
|< () BT 0+ T ()]

k(0 — )k !

1 , ,
(a +k)B(a)Ti(a) (1 - 2;‘:) [U (MI+1T (6)|}
holds for all o,k > 0

(22)

Proof. By taking the absolute value on both sides of the identity in (13) and using the
convexity of | 7’|, we obtain

B [T 0+ g T ()]
e o
éimﬁﬁé -t A )]+ (- DT @)
DY | .
- O DS [ -t -

|G—AM4.

(23)
With an argument similar to the one used in the proof of Theorem 7, we deduce that

/1|(1—A)ﬁ—/\i|/\d/\—i}i_l(l—;ﬁ:) (24)
and
|(1—A)F —AR|(1—A)dA = ,,(1 (11) (25)
0 rt1 2k
The desired inequality in (22) follows by substituting (24) and (25) in (23)
O

Using Lemma 2, we obtain the following midpoint type inequalities.

Theorem 9. If J satisfies the conditions of Lemma 2 and J' is bounded, that is, || J'| e
sup |J'(x)| < oo, then the inequality

x€[v,0]

i) T (O) L) T ()]
() 77)

B (6 — )k 0+ 1—a
<2?13(u¢)rk(zx)j< 2 >+ B(a) {ijJ(Q)D‘
G
2k (a+ K)B(a)Ti(w)
holds for all o,k > 0.

(26)
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Proof. Taking the absolute value on both sides of the identity in (16) and using the bound-
edness of J’, we obtain

i) T (O) + s, T ()]

)
B (6 — )% 0+ 1—u
(Zk s (57) 5 [J(v)+3(9)}>‘

— )kt
W[/OUZMJ(MJr 1-A |d/\+/ (1= kAN Ay +(1— )9)|dA]

(6 — DT oo (12 4 ;
B(a)Tx(a) [/o Ardr+ 1/2“‘”"‘”]

_ KO Tl

2% (a + K)B(a)Tx(a)

IN

IN

Hence the proof is complete. [J

Theorem 10. If 7 satisfies the conditions of Lemma 1 and J' is convex on [y, 6], then the inequality

BBt 0, T (0) + APl T ()]
( % J<9;7)+;(_aﬁj(v)+j(9)}>‘
w( 05 () (){w( M+17O)] @)

holds for all a,k > 0.

Proof. Taking the absolute value on both sides of the identity in (16) and using the convex-
ity of | 7’|, we obtain

B(a)

SW[/Ol/z/\ij(/\er 1-A |d/\+/ (1-M)ET Ay + (1 - )9)|dA]
gm[/ (A|J )+ (1= )T O)])ar

+/ 1 =ity )+(1—A)|J’(9)|)d)L]
—(g(;)” [ (/ Ak“d;ur/ (1-7 )

+17'(0)| </01/2A2(1 —A)dA + 1 (1- A)%lam)]

1/2
_ ke-mFH!
28 (w4 k)B(a)T(a)

(6= j(ejy) +1‘“[J<v>+J<en>\

17l +17'©)]]-

Hence, the proof is complete. O
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Remark 3. It is worth noting that the inequalities in Theorems 7—10 provide estimates for the
absolute of the error between the middle term and left or right terms in the inequality in Theorem 6,
with some modifications.

3. Conclusions

We proposed the definitions of some new generalized fractional integral operators
called k-Atangana-Baleanu fractional integrals. The well-known Atangana-Baleanu frac-
tional integrals are special cases of the newly proposed fractional integral operators when
k = 1; see Remark 1. The Hermite-Hadamard inequality and some fractional integral
inequalities involving these new generalized fractional integral operators have been es-
tablished as an application of these new operators. It has been noted that certain results
already provided can be obtained as particular cases from some of our results; see Remark 2.
In addition, if we set k = 1 in the inequalities of Theorems 7-10, we obtain, respectively,
the following inequalities involving the Atangana—Baleanu fractional integrals:

1.

‘ ((9 — )" _1[_((1 — oc)l"(@) J)+I0) _ {ABI%\T(G) + ABIgﬁJ(’Y)} ‘

«) B()
200 =" I Nleo (, _ 1
S @ 1)Ba) (@) (1 za)-
2.
(0 — 1)+ (1—a)T(a)\ T(7) + T(6) ) )
‘ ( I'(a) > B(«) B [ABIWJ(G) T ABIefj(’ﬂ} ‘
(-7 1 , ,
= (v +1)B(a)l(a) (1_ 2a> [U v+ 1T (9)\}.
3.
(A1 T (0)+ AL T ()]
(0 —)" 0+ 1—a
(z“ TB(a)T (w >j< 2 )* B(a) WW)”(@H)]
< (9 ’)/)"‘+1||j’“
2¢(a + 1)B(a)T ()’
4.

(P10 T O) + P10 T ()]

(32

)~

(0 — )~ 0+ 11—«

(z“ TB(a)I(a >‘7< 2 )*B(a) [‘7””‘7(9”)’
(9_')’)“+1 / /

< e T 1B 1T )+ 1T O]

These special cases are new, to the best of our knowledge. We are of the opinion that
the results in this paper will stimulate further research on fractional integral operators and
their applications.
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