Applications of Fractional Differential Operator to Subclasses of Uniformly q-Starlike Functions
Abstract
:1. Introduction and Motivation
2. A Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Khan, S.; Altinkaya, S.; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber Polynomial coefficient estimates for Janowski type bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Tech. Tran. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washinton, NJ, USA, 1983; Volumes I, II. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Rønning, F. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1991, 45, 117–122. [Google Scholar]
- Ma, W.; Minda, D. Uniformly convex functions. Ann. Polon. Math. 1992, 57, 165–175. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic domains and k-starlike functions. Rev. Roum. Math. Pure Appl. 2000, 45, 647–657. [Google Scholar]
- Rønning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef]
- Subramanian, K.G.; Murugusundaramoorthy, G.; Balasubrahmanyam, P.; Silverman, H. Subclasses of uniformly convex and uniformly starlike functions. Math. Jpn. 1995, 42, 517–522. [Google Scholar]
- Al-Oboudi, F.M.; Al-Amoudi, K.A. On classes of analytic functions related to conic domains. J. Math. Anal. Appl. 2008, 339, 655–667. [Google Scholar] [CrossRef]
- Kanas, S.; Yuguchi, T. Subclasses of k-uniformly convex and starlike functions defined by generalized derivative, II. Publ. Inst. Math. 2001, 69, 91–100. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Aral, A. On the generalized Picard and Gauss Weierstrass singular integrals. J. Comput. Anal. Appl. 2006, 8, 249–261. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Uma, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. RACSAM 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Arif, M.; Wang, Z.G.; Khan, R.; Lee, S.K. Coefficient inequalities for Janowski-Sakaguchi type functions associated with conic regions. Hacet. J. Math. Stat. 2018, 47, 261–271. [Google Scholar] [CrossRef]
- Deniz, E.; Caglar, M.; Orhan, H. The Fekete-Szego problem for a class of analytic functions defined by Dziok-Srivastava operator. Kodai Math. J. 2012, 35, 439–462. [Google Scholar] [CrossRef]
- Deniz, E.; Orhan, H.; Sokol, J. Classes of analytic functions defined by a differential operator related to conic domains. Ukr. Math. J. 2016, 67, 1367–1385. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hpergeometric Series, Volume 35 of Encyclopedia of Mathematics and Its Applications; Ellis Horwood: Chichester, UK, 1990. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Selvakumaran, K.A.; Choi, J.; Purohit, S.D. Certain subclasses of analytic functions defined by fractional q-calculus operators. Appl. Math. E-Notes 2021, 21, 72–80. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; International Press Inc.: Cambridge, UK, 1992; pp. 157–169. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Ruscheweyh, S.; Sheil-Small, T. Hadamard products of Schlicht functions and the Pólya–Schöenberg conjecture. Comment. Math. Helv. 1973, 48, 119–135. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Convolutions in geometric function theory. In Séminaire de Mathématiques Supérieures; Presses de l’Université de Montréal: Montréal, QC, Canada, 1982; Volume 83. [Google Scholar]
- Bharti, R.; Parvatham, R.; Swaminathan, A. On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang J. Math. 1997, 28, 17–32. [Google Scholar] [CrossRef]
- Kanas, S.; Yuguchi, T. Subclasses of k-uniformly convex and starlike functions defined by generalized derivate, I. Indian J. Pure Appl. Math. 2001, 32, 1275–1282. [Google Scholar]
- Ling, Y.; Ding, S. A class of analytic functions defined by fractional derivation. J. Math. Anal. Appl. 1994, 186, 504–513. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Das, M.K. A nested class of analytic functions defined by fractional calculus. Commun. Appl. Anal. 1998, 2, 321–332. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K. Applications of fractional calculus to parabolic starlike and uniformly convex functions. J. Comput. Math. Appl. 2000, 39, 57–69. [Google Scholar] [CrossRef]
- Srivastava, H.M. Editorial for the Special Issue “Operators of Fractional Calculus and Their Multidisciplinary Applications”. Fractal Fract. 2023, 7, 415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Khan, K.; Tawfiq, F.M.; Ro, J.-S.; Al-shbeil, I. Applications of Fractional Differential Operator to Subclasses of Uniformly q-Starlike Functions. Fractal Fract. 2023, 7, 715. https://doi.org/10.3390/fractalfract7100715
Khan N, Khan K, Tawfiq FM, Ro J-S, Al-shbeil I. Applications of Fractional Differential Operator to Subclasses of Uniformly q-Starlike Functions. Fractal and Fractional. 2023; 7(10):715. https://doi.org/10.3390/fractalfract7100715
Chicago/Turabian StyleKhan, Nazar, Kashif Khan, Ferdous M. Tawfiq, Jong-Suk Ro, and Isra Al-shbeil. 2023. "Applications of Fractional Differential Operator to Subclasses of Uniformly q-Starlike Functions" Fractal and Fractional 7, no. 10: 715. https://doi.org/10.3390/fractalfract7100715
APA StyleKhan, N., Khan, K., Tawfiq, F. M., Ro, J. -S., & Al-shbeil, I. (2023). Applications of Fractional Differential Operator to Subclasses of Uniformly q-Starlike Functions. Fractal and Fractional, 7(10), 715. https://doi.org/10.3390/fractalfract7100715