A New Look at the Capacitor Theory
Abstract
:1. Introduction
Remarks
- Our working domain is always .
- We use the bilateral Laplace transform (LT):
- The Fourier transform is obtained from the LT through the substitution with and .
- The inverse LT is given by the Bromwich integral
- Current properties of the Dirac delta distribution, , and its derivatives will be used.
- The order of the fractional derivative is assumed to be any real number.
- The multi-valued expression is used. To obtain a function we will fix for a branch-cut line the negative real half axis and select the first Riemann surface.
- It is very common to add the prefix pseudo” to the “fractionalisation” of classic entities, as is also the case for "capacitance", which appears as “pseudo-capacitance”. We do not find any particular reason to do so [1].
2. Fractional Devices and Derivatives
2.1. The Differintegrator
2.2. Suitable Fractional Derivatives
3. On the Capacitor
3.1. Classic:
3.2. Fractional:
3.3. A Strange Result
4. On the Fractional Inductor
5. Responses of Fractional Ideal Capacitor
5.1. Formulation
- 1.
- Voltage
- 2.
- Current
5.2. The Voltage Input Case
5.3. The Current Input Case
- 1.
- The use of the fractional anti-derivative () that is defined by a regular integral:
- 2.
- The involvement of the function does not add complexity to the situation.
6. Power and Energy
- 1.
- The integrand degenerates into a and the integral gives 1. Thus, the energy is .
- 2.
- ;
- ;
- ;
7. Variable Order Capacitors and Inductors
8. Tempered Fractors
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Westerlund, S.; Ekstam, L. Capacitor Theory. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 826–839. [Google Scholar] [CrossRef]
- Westerlund, S. Dead Matter Has Memory; Causal Consulting: Kalmar, Sweden, 2002. [Google Scholar]
- Das, S. A new look at formulation of charge storage in capacitors and application to classical capacitor and fractional capacitor theory. Asian J. Res. Rev. Phys. 2018, 1, 1–18. [Google Scholar] [CrossRef]
- Das, S. Theoretical verification of formula for charge function in time q=c*v in RC circuit for charging/discharging of fractional & ideal capacitor. Theory Appl. Phys. Sci. 2019, 1, 1–44. [Google Scholar]
- Pandey, V. Origin of the Curie–von Schweidler law and the fractional capacitor from time-varying capacitance. J. Power Sources 2022, 532, 231309. [Google Scholar] [CrossRef]
- Allagui, A.; Elwakil, A.S.; Psychalinos, C. Comment on “Origin of the Curie–von Schweidler law and the fractional capacitor from time-varying capacitance” [J. Pow. Sources 532 (2022) 231309]. J. Power Sources 2022, 551, 232166. [Google Scholar] [CrossRef]
- Pandey, V. Response to “Comment on ‘Origin of the Curie–von Schweidler law and the fractional capacitor from time-varying capacitance [J. Power Sources 532 (2022) 231309]’”. J. Power Sources 2022, 551, 232167. [Google Scholar] [CrossRef]
- Ortigueira, M.D. On the “walking dead” derivatives: Riemann–Liouville and Caputo. In Proceedings of the ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014, Catania, Italy, 23–25 June 2014; pp. 1–4. [Google Scholar]
- Kuroda, L.K.B.; Gomes, A.V.; Tavoni, R.; de Arruda Mancera, P.F.; Varalta, N.; de Figueiredo Camargo, R. Unexpected behavior of Caputo fractional derivative. Comput. Appl. Math. 2017, 36, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhang, B. Comparative study of Riemann–Liouville and Caputo derivative definitions in time-domain analysis of fractional-order capacitor. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 2184–2188. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Valério, D. Fractional Signals and Systems; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Das, S. Revisiting the Curie-von Schweidler law for dielectric relaxation and derivation of distribution function for relaxation rates as Zipf’s power law and manifestation of fractional differential equation for capacitor. J. Mod. Phys. 2017, 8, 1988–2012. [Google Scholar] [CrossRef] [Green Version]
- Allagui, A.; Elwakil, A.S.; Fouda, M.E. Revisiting the time-domain and frequency-domain definitions of capacitance. IEEE Trans. Electron Devices 2021, 68, 2912–2916. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.T. The 21st century systems: An updated vision of continuous-time fractional models. IEEE Circuits Syst. Mag. 2022, 22, 36–56. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Bengochea, G.; Machado, J.T. Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron. Math. Methods Appl. Sci. 2021, 44, 9191–9209. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Danbury, CT, USA, 2006. [Google Scholar]
- Sheng, H.; Sun, H.G.; Coopmans, C.; Chen, Y.Q.; Bohannan, G.W. A Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 2011, 193, 93–104. [Google Scholar] [CrossRef]
- Biswas, K.; Bohannan, G.; Caponetto, R.; Lopes, A.M.; Machado, J.A.T. Fractional-Order Devices; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Adhikary, A.; Biswas, K. Four-quadrant fractors and their applications in fractional order circuits. In Volume 8 Applications in Engineering, Life and Social Sciences, Part B; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 33–62. [Google Scholar]
- Allagui, A.; Freeborn, T.J.; Elwakil, A.S.; Fouda, M.E.; Maundy, B.J.; Radwan, A.G.; Said, Z.; Abdelkareem, M.A. Review of fractional-order electrical characterization of supercapacitors. J. Power Sources 2018, 400, 457–467. [Google Scholar] [CrossRef]
- Fouda, M.E.; Allagui, A.; Elwakil, A.S.; Eltawil, A.; Kurdahi, F. Supercapacitor discharge under constant resistance, constant current and constant power loads. J. Power Sources 2019, 435, 226829. [Google Scholar] [CrossRef]
- Shah, Z.M.; Kathjoo, M.Y.; Khanday, F.A.; Biswas, K.; Psychalinos, C. A survey of single and multi-component Fractional-Order Elements (FOEs) and their applications. Microelectron. J. 2019, 84, 9–25. [Google Scholar] [CrossRef]
- Buscarino, A.; Caponetto, R.; Graziani, S.; Murgano, E. Realization of fractional order circuits by a Constant Phase Element. Eur. J. Control 2020, 54, 64–72. [Google Scholar] [CrossRef]
- Caponetto, R.; Graziani, S.; Murgano, E. Realization of a fractional-order circuit via constant phase element. Int. J. Dyn. Control 2021, 9, 1589–1599. [Google Scholar] [CrossRef]
- Koton, J.; Kubanek, D.; Dvorak, J.; Herencsar, N. On Systematic Design of Fractional-Order Element Series. Sensors 2021, 21, 1203. [Google Scholar] [CrossRef]
- Freeborn, T.J. A Survey of Fractional-Order Circuit Models for Biology and Biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 416–424. [Google Scholar] [CrossRef]
- Martynyuk, V.; Ortigueira, M.D. Fractional model of an electrochemical capacitor. Signal Process. 2015, 107, 355–360. [Google Scholar] [CrossRef]
- De Santis, V.; Martynyuk, V.; Lampasi, A.; Fedula, M.; Ortigueira, M. Fractional-order circuit models of the human body impedance for compliance tests against contact currents. AEU-Int. J. Electron. Commun. 2017, 78, 238–244. [Google Scholar] [CrossRef]
- Martynyuk, V.; Ortigueira, M.D.; Fedula, M.; Savenko, O. Methodology of electrochemical capacitor quality control with fractional order model. AEU-Int. J. Electron. Commun. 2018, 91, 118–124. [Google Scholar] [CrossRef]
- Schäfer, I.; Krüger, K. Modelling of coils using fractional derivatives. J. Magn. Magn. Mater. 2006, 307, 91–98. [Google Scholar] [CrossRef]
- Schäfer, I.; Krüger, K. Modelling of lossy coils using fractional derivatives. J. Phys. D Appl. Phys. 2008, 41, 045001. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands; Heidelberg, Germany, 2011. [Google Scholar]
- Gelfand, I.M.; Shilov, G.P. Generalized Functions; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Prasad, R.; Mehta, U.; Kothari, K. Various analytical models for supercapacitors: A mathematical study. In Resource-Efficient Technologies; Tomsk Polytechnic University: Tomsk, Russia, 2020; pp. 1–15. [Google Scholar]
- Liouville, J. Memóire sur le calcul des différentielles à indices quelconques. J. l’École Polytech. Paris 1832, 13, 71–162. [Google Scholar]
- Liouville, J. Memóire sur quelques questions de Géométrie et de Méchanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. l’École Polytech. Paris 1832, 13, 1–69. [Google Scholar]
- Herrmann, R. Fractional Calculus, 3rd ed.; World Scientific: Singapore, 2018. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Stefański, T.P.; Gulgowski, J. Electromagnetic-based derivation of fractional-order circuit theory. Commun. Nonlinear Sci. Numer. Simul. 2019, 79, 104897. [Google Scholar] [CrossRef]
- Zhang, L.; Kartci, A.; Elwakil, A.; Bagci, H.; Salama, K.N. Fractional-order inductor: Design, simulation, and implementation. IEEE Access 2021, 9, 73695–73702. [Google Scholar] [CrossRef]
- Fouda, M.; Elwakil, A.; Radwan, A.; Allagui, A. Power and energy analysis of fractional-order electrical energy storage devices. Energy 2016, 111, 785–792. [Google Scholar] [CrossRef]
- Bengochea, G.; Ortigueira, M.D. Fractional derivative of power type functions. Comput. Appl. Math. 2022, 41, 1–18. [Google Scholar]
- Ortigueira, M.D.; Valério, D.; Machado, J.T. Variable order fractional systems. Commun. Nonlinear Sci. Numer. Simul. 2019, 71, 231–243. [Google Scholar] [CrossRef]
- Machado, J.T. Matrix fractional systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 25, 10–18. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.; Lopes, A.M.; de Camposinhos, R. Fractional-order modelling of epoxy resin. Philos. Trans. R. Soc. A 2020, 378, 20190292. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortigueira, M.D.; Martynyuk, V.; Kosenkov, V.; Batista, A.G. A New Look at the Capacitor Theory. Fractal Fract. 2023, 7, 86. https://doi.org/10.3390/fractalfract7010086
Ortigueira MD, Martynyuk V, Kosenkov V, Batista AG. A New Look at the Capacitor Theory. Fractal and Fractional. 2023; 7(1):86. https://doi.org/10.3390/fractalfract7010086
Chicago/Turabian StyleOrtigueira, Manuel Duarte, Valeriy Martynyuk, Volodymyr Kosenkov, and Arnaldo Guimarães Batista. 2023. "A New Look at the Capacitor Theory" Fractal and Fractional 7, no. 1: 86. https://doi.org/10.3390/fractalfract7010086
APA StyleOrtigueira, M. D., Martynyuk, V., Kosenkov, V., & Batista, A. G. (2023). A New Look at the Capacitor Theory. Fractal and Fractional, 7(1), 86. https://doi.org/10.3390/fractalfract7010086