LFM Signal Parameter Estimation via FTD-FRFT in Impulse Noise
Abstract
:1. Introduction
2. Impulse Noise Model of Alpha Stable Distribution
3. Parameter Estimation of LFM Signals Based on FTD-FrFT
3.1. Filtering Algorithm Based on the Fastest Tracking Differentiator
3.2. Tracking factor of the FTD
3.3. Parameter Estimation Based on FrFT of LFM Signal
4. Simulation-Based Experiments and Analysis
4.1. FTD Filtering Performance Verification
4.2. Verification of LFM Signal Parameter Estimation Accuracy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, N.; Wang, J. Sub-Nyquist sampling and parameters estimation of wideband Chirp signals based on FRFT. Radioelectron. Commun. Syst. 2018, 61, 333–341. [Google Scholar] [CrossRef]
- Guo, L.-B.; Tang, J.-L.; Dong, Y.-Y.; Dong, C.-X. One-bit LFM signal recovery via random threshold strategy. Digit. Signal Process. 2021, 111, 102965. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, F.; Zhou, P.; Pan, S. Dual-Band LFM Signal Generation by Optical Frequency Quadrupling and Polarization Multiplexing. IEEE Photon-Technol. Lett. 2017, 29, 1320–1323. [Google Scholar] [CrossRef]
- Ji, J.; Zheng, S.; Zhang, X. Pre-distortion compensation for optical-based broadband LFM signal generation system. Opt. Commun. 2019, 435, 277–282. [Google Scholar] [CrossRef]
- Jiang, L.; Li, L.; Zhao, G.; Pan, Y. Instantaneous Frequency Estimation of Nonlinear Frequency-Modulated Signals Under Strong Noise Environment. Circuits Syst. Signal Process. 2016, 35, 3734–3744. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, B.; Wang, C. Frequency estimation of chirp signals based on fractional fourier transform combined with Otsu’s method. Optik 2021, 240, 166945. [Google Scholar] [CrossRef]
- Liu, X.; Han, J.; Wang, C.; Xiao, B. Parameters Estimation for Chirp Signal Based on QPF-FRFT. Optik 2019, 182, 529–537. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, F.; Tao, R. Mutual Information Rate of Nonstationary Statistical Signals. Signal Process. 2020, 171, 107531. [Google Scholar] [CrossRef]
- Moghadasian, S.S.; Gazor, S. Sparsely Localized Time-Frequency Energy Distributions for Multi-Component LFM Signals. IEEE Signal Process. Lett. 2020, 27, 6–10. [Google Scholar] [CrossRef]
- Stuck, W.; Kleiner, B. A statistical analysis of telephone noise. Bell Syst. Tech. J. 1974, 53, 1263–1320. [Google Scholar] [CrossRef]
- Nikias, C.L.; Shao, M. Signal Processing with Alpha-Stable Distributions and Applications; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Engin, K.E. Signal Processing with Fractional Lower Order Environments at Least lp-Norm Approach. Ph.D. Thesis, University of Cambridge, London, UK, 1998. [Google Scholar]
- Yang, F.; Jia, H.; Liu, B.; Long, K. Performance analysis of broadband power-line communications systems under the alpha-stable impulsive noise. J. Electron. Inf. Technol. 2019, 41, 1374–1380. [Google Scholar] [CrossRef]
- Gu, G.-D.; Zhang, Y.-S.; Tian, B. Estimation of LFM signal’s time parameters under the alpha-stable distribution noise. In Proceedings of the IEEE Circuits and Systems International Conference on Testing and Diagnosis, Chengdu, China, 28 April 2009; pp. 1–4. [Google Scholar]
- Jin, Y.; Duan, P.T.; Ji, H.B. Parameter estimation of LFM Signals based on LVD in complicated noise environments. J. Electron. Inform. Technol. 2014, 36, 1106–1112. [Google Scholar]
- Liu, X.; Wang, C. A Novel Parameter Estimation of Chirp Signal in α-Stable Noise. IEICE Electron. Express 2017, 14, 20161053. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xiao, G.; Yu, X.; Xie, Y. On Convergence Performance of Discrete-Time Optimal Control Based Tracking Differentiator. IEEE Trans. Ind. Electron. 2020, 68, 3359–3369. [Google Scholar] [CrossRef]
- Wang, Z.; Long, Z.; Xie, Y.; Ding, J.; Luo, J.; Li, X. A Discrete Nonlinear Tracking-Differentiator and Its Application in Vibration Suppression of Maglev System. Math. Probl. Eng. 2020, 2020 Pt 20, 1849816.1–1849816.9. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, B.; Wang, C. Optimal Target Function for the Fractional Fourier Transform of LFM Signals. Circuits Syst. Signal Process. 2022, 41, 4160–4173. [Google Scholar] [CrossRef]
- Liu, X.; Han, J.; Wang, C.; Xiao, B. Parameter estimation of linear frequency modulation signals based on sampling theorem and fractional broadening. Rev. Sci. Instrum. 2019, 90, 014702. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, X.; Xiao, B.; Wang, C.; Ma, B. LFM Signal Parameter Estimation via FTD-FRFT in Impulse Noise. Fractal Fract. 2023, 7, 69. https://doi.org/10.3390/fractalfract7010069
Liu X, Li X, Xiao B, Wang C, Ma B. LFM Signal Parameter Estimation via FTD-FRFT in Impulse Noise. Fractal and Fractional. 2023; 7(1):69. https://doi.org/10.3390/fractalfract7010069
Chicago/Turabian StyleLiu, Xuelian, Xuemei Li, Bo Xiao, Chunyang Wang, and Bo Ma. 2023. "LFM Signal Parameter Estimation via FTD-FRFT in Impulse Noise" Fractal and Fractional 7, no. 1: 69. https://doi.org/10.3390/fractalfract7010069
APA StyleLiu, X., Li, X., Xiao, B., Wang, C., & Ma, B. (2023). LFM Signal Parameter Estimation via FTD-FRFT in Impulse Noise. Fractal and Fractional, 7(1), 69. https://doi.org/10.3390/fractalfract7010069