Next Article in Journal
Multiplicity of Solutions for Fractional-Order Differential Equations via the κ(x)-Laplacian Operator and the Genus Theory
Next Article in Special Issue
A Second-Order Adaptive Grid Method for a Singularly Perturbed Volterra Integrodifferential Equation
Previous Article in Journal
Robust H Controller Design of Switched Delay Systems with Linear Fractional Perturbations by Synchronous Switching of Rule and Sampling Input
Previous Article in Special Issue
Existence of Positive Solutions for a Singular Second-Order Changing-Sign Differential Equation on Time Scales
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Positive Solutions for a System of Riemann–Liouville Type Fractional-Order Integral Boundary Value Problems

1
School of Mathematics, Qilu Normal University, Jinan 250013, China
2
Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
3
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
4
School of Mathematical and Statistical Sciences, National University of Ireland, H91 TK33 Galway, Ireland
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(9), 480; https://doi.org/10.3390/fractalfract6090480
Submission received: 8 August 2022 / Revised: 25 August 2022 / Accepted: 28 August 2022 / Published: 29 August 2022
(This article belongs to the Special Issue Fractional Differential Equations in Anomalous Diffusion)

Abstract

:
In this paper, we use the fixed-point index to establish positive solutions for a system of Riemann–Liouville type fractional-order integral boundary value problems. Some appropriate concave and convex functions are used to characterize coupling behaviors of our nonlinearities.

1. Introduction

In this paper, we use the fixed-point index to investigate the existence of positive solutions for the system of Riemann–Liouville type fractional-order integral boundary value problems:
D 0 + α φ ( t ) = f ( t , φ ( t ) , ϕ ( t ) ) , 0 < t < 1 , D 0 + α ϕ ( t ) = g ( t , φ ( t ) , ϕ ( t ) ) , 0 < t < 1 , φ ( 0 ) = ϕ ( 0 ) = φ ( 0 ) = ϕ ( 0 ) = 0 , φ ( 1 ) = 0 1 φ ( t ) d β ( t ) , ϕ ( 1 ) = 0 1 ϕ ( t ) d β ( t ) ,
where α ( 2 , 3 ) is a real number, and f , g and β satisfy the conditions:
(H1) f , g C ( [ 0 , 1 ] × R + × R + , R ) , and there exist M > 0 , Q f and Q g C ( [ 0 , 1 ] , R + ) such that
f ( t , x , y ) M x Q f ( t ) , g ( t , x , y ) M y Q g ( t ) , t [ 0 , 1 ] , x , y R + .
Define a function
h ( t ) = k = 0 + ( k α + α 2 ) ( k α + α 3 ) t k Γ ( k α + α ) .
As in [1], there exists a unique number M > 0 such that h ( M ) = 0 . Then, M in (H1) satisfies the condition:
(H2) M ( 0 , M ] .
Define a function
H ( t ) = t α 1 E α , α ( M t α ) ,
where E α , α ( t ) = k = 0 + t k Γ ( ( k + 1 ) α ) is the Mittag–Leffler function (see [2,3]). Then, β in (1) satisfies the condition:
(H3) β is a nonnegative function of bounded variation, and 0 1 H ( t ) d β ( t ) [ 0 , H ( 1 ) ) .
Fractional-order equations are widely used in mathematics, physics, engineering and other fields; for example they arise in problems of robotics, signal processing and conversion. There are many papers in the literature establishing the existence of solutions using the Leray–Schauder fixed-point theorem, the coincidence degree theory and the Guo–Krasnoselskii fixed-point theorem in cones; we refer the reader to [1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] and the references cited therein.
In [4], the authors studied positive solutions of an abstract fractional semipositone differential system involving integral boundary conditions arising from the study of HIV infection models
D 0 + α u ( t ) + λ f t , u ( t ) , D 0 + β u ( t ) , v ( t ) = 0 , D 0 + γ v ( t ) + λ g ( t , u ( t ) ) = 0 , 0 < t < 1 , D 0 + β u ( 0 ) = D 0 + β + 1 u ( 0 ) = 0 , D 0 + β u ( 1 ) = 0 1 D 0 + β u ( s ) d A ( s ) , v ( 0 ) = v ( 0 ) = 0 , v ( 1 ) = 0 1 v ( s ) d B ( s ) ,
where 2 < α , γ 3 , 0 < β < 1 , u denotes the number of uninfected CD 4 + T cells and v denotes the number of infected cells, and the nonlinearities f , g satisfy:
f : [ 0 , 1 ] × [ 0 , + ) 3 ( , + ) , g : [ 0 , 1 ] × [ 0 , + ) ( , + ) are continuous functions and f t , z 1 , z 2 , z 3 e ( t ) , t , z 1 , z 2 , z 3 [ 0 , 1 ] × [ 0 , + ) 3 , g ( t , z ) e ¯ ( t ) , ( t , z ) [ 0 , 1 ] × [ 0 , + ) , e , e ¯ : [ 0 , 1 ] [ 0 , + ) .
In [5], the authors investigated positive solutions for the nonlinear semipositone fractional q-difference system with coupled integral boundary conditions
D q α u ( t ) + λ f ( t , u ( t ) , v ( t ) ) = 0 , D q β v ( t ) + λ g ( t , u ( t ) , v ( t ) ) = 0 , t ( 0 , 1 ) , λ > 0 , D q j u ( 0 ) = D q j v ( 0 ) = 0 , 0 j n 2 , u ( 1 ) = μ 0 1 v ( s ) d q s , v ( 1 ) = v 0 1 u ( s ) d q s ,
where α , β ( n 1 , n ] are two real numbers and n 3 , D q α , D q β are the fractional q-derivative of the Riemann–Liouville type, and the nonlinearities f and g satisfy some similar conditions in (2). In [6], the authors studied the existence and multiplicity of positive solutions for the system of Riemann–Liouville fractional differential equations
D 0 + α 1 D 0 + β 1 u ( t ) + λ f ( t , u ( t ) , v ( t ) ) = 0 , t ( 0 , 1 ) , D 0 + α 2 D 0 + β 2 v ( t ) + μ g ( t , u ( t ) , v ( t ) ) = 0 , t ( 0 , 1 ) ,
with the boundary conditions
u ( j ) ( 0 ) = 0 , j = 0 , , n 2 ; D 0 + β 1 u ( 0 ) = 0 , D 0 + γ 0 u ( 1 ) = i = 1 p 0 1 D 0 + γ i v ( t ) d H i ( t ) , v ( j ) ( 0 ) = 0 , j = 0 , , m 2 ; D 0 + β 2 v ( 0 ) = 0 , D 0 + δ 0 v ( 1 ) = i = 1 q 0 1 D 0 + δ i u ( t ) d K i ( t ) ,
where the nonlinearities f and g satisfy some growth conditions.
Motivated by the above, in this paper we use the fixed-point index to establish positive solutions for the system (1). Some appropriate concave and convex functions are used to characterize the coupling behaviors of our nonlinearities. Moreover, our condition (H1) is more general than (2).

2. Preliminaries

Definition 1
(see [2,3]). The Riemann–Liouville fractional derivative of order α > 0 of a function φ : ( 0 , + ) R is given by
D 0 + α φ ( t ) = 1 Γ ( n α ) d d t n 0 t ( t s ) n α 1 φ ( s ) d s
where n = [ α ] + 1 and [ α ] denotes the integer part of number α, provided that the right-hand side is pointwise defined on ( 0 , + ) .
Lemma 1
(see [1]). Suppose that (H2) holds and y L [ 0 , 1 ] . Then, the boundary value problem
D 0 + α φ ( t ) + M φ ( t ) = y ( t ) , 0 < t < 1 , φ ( 0 ) = φ ( 0 ) = φ ( 1 ) = 0 ,
has a unique solution
φ ( t ) = 0 1 K ˜ ( t , s ) y ( s ) d s ,
where
K ˜ ( t , s ) = 1 H ( 1 ) H ( t ) H ( 1 s ) , 0 t s 1 , H ( t ) H ( 1 s ) H ( t s ) H ( 1 ) , 0 s t 1 .
Lemma 2.
Suppose that (H2)–(H3) hold and y L [ 0 , 1 ] . Then, the boundary value problem
D 0 + α φ ( t ) + M φ ( t ) = y ( t ) , 0 < t < 1 , φ ( 0 ) = φ ( 0 ) = 0 , φ ( 1 ) = 0 1 φ ( t ) d β ( t ) ,
has a unique solution
φ ( t ) = 0 1 K ( t , s ) y ( s ) d s ,
where
K ( t , s ) = K ˜ ( t , s ) + H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 K ˜ ( t , s ) d β ( t ) .
Proof. 
From Lemma 2.1 in [1], we have
φ ( t ) = 0 t H ( t s ) y ( s ) d s + c 1 H ( t ) + c 2 H ( t ) + c 3 H ( t ) ,
where c i R , i = 1 , 2 , 3 . Since φ ( 0 ) = φ ( 0 ) = 0 , c 2 = c 3 = 0 . Therefore,
φ ( t ) = 0 t H ( t s ) y ( s ) d s + c 1 H ( t ) .
Using φ ( 1 ) = 0 1 φ ( t ) d β ( t ) , we have
0 1 H ( 1 s ) y ( s ) d s + c 1 H ( 1 ) = 0 1 0 t H ( t s ) y ( s ) d s d β ( t ) + c 1 0 1 H ( t ) d β ( t ) ,
and
c 1 = 1 H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 H ( 1 s ) y ( s ) d s 1 H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 0 t H ( t s ) y ( s ) d s d β ( t ) .
Consequently, we obtain
φ ( t ) = 0 t H ( t s ) y ( s ) d s + H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 H ( 1 s ) y ( s ) d s H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 0 t H ( t s ) y ( s ) d s d β ( t ) = 0 t H ( t s ) y ( s ) d s + 1 H ( 1 ) 0 1 H ( t ) H ( 1 s ) y ( s ) d s 1 H ( 1 ) 0 1 H ( t ) H ( 1 s ) y ( s ) d s + H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 H ( 1 s ) y ( s ) d s H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 0 t H ( t s ) y ( s ) d s d β ( t ) = 0 1 K ˜ ( t , s ) y ( s ) d s + 0 1 H ( t ) d β ( t ) H ( 1 ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] 0 1 H ( t ) H ( 1 s ) y ( s ) d s H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 0 t H ( t s ) y ( s ) d s d β ( t ) = 0 1 K ˜ ( t , s ) y ( s ) d s + H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 1 H ( 1 ) 0 1 0 1 H ( t ) H ( 1 s ) d β ( t ) s 1 H ( 1 ) H ( t s ) d β ( t ) y ( s ) d s = 0 1 K ˜ ( t , s ) y ( s ) d s + H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 0 1 K ˜ ( t , s ) d β ( t ) y ( s ) d s = 0 1 K ( t , s ) y ( s ) d s .
This completes the proof. □
Lemma 3
(see [1]). The function K ˜ has the properties
(i) K ˜ ( t , s ) > 0 , t , s ( 0 , 1 ) ;
(ii) K ˜ ( t , s ) = K ˜ ( 1 s , 1 t ) , t , s [ 0 , 1 ] ;
(iii) K ˜ ( t , s ) M 2 s ( 1 s ) α 1 , t , s [ 0 , 1 ] ;
(iv) K ˜ ( t , s ) M 1 s ( 1 s ) α 1 ( 1 t ) t α 1 , t , s [ 0 , 1 ] , where
M 1 = 1 H ( 1 ) [ Γ ( α ) ] 2 , M 2 = H ( 1 ) 2 H ( 1 ) s , s ( 0 , 1 ) is a unique solution for the equation s = ( 1 s ) α 2 .
Lemma 4.
The function K has the properties
(i) K ( t , s ) > 0 , t , s ( 0 , 1 ) ;
(ii) K ( t , s ) M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) s ( 1 s ) α 1 , t , s [ 0 , 1 ] ;
(iii) K ( t , s ) M 1 1 + 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) s ( 1 s ) α 1 ( 1 t ) t α 1 , t , s [ 0 , 1 ] ;
(iv) K ( t , s ) M 1 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) t α 1 s ( 1 s ) α 1 , t , s [ 0 , 1 ] .
Proof. 
From Theorem 3.1 in [21], we have
t α 1 Γ ( α ) H ( t ) t α 1 H ( 1 ) H ( 1 ) , t [ 0 , 1 ] .
Then, by Lemma 3 (iii) we obtain
K ( t , s ) M 2 s ( 1 s ) α 1 + H ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 M 2 s ( 1 s ) α 1 d β ( t ) = M 2 s ( 1 s ) α 1 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) .
On the other hand, from Lemma 3 (iv), we obtain
K ( t , s ) M 1 s ( 1 s ) α 1 ( 1 t ) t α 1 + t α 1 [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) 0 1 M 1 s ( 1 s ) α 1 ( 1 t ) t α 1 d β ( t ) M 1 s ( 1 s ) α 1 ( 1 t ) t α 1 1 + 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) .
Furthermore, we have
K ( t , s ) H ( t ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 K ˜ ( t , s ) d β ( t ) t α 1 [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) 0 1 M 1 s ( 1 s ) α 1 ( 1 t ) t α 1 d β ( t ) = M 1 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) t α 1 s ( 1 s ) α 1 .
This completes the proof. □
Lemma 5.
Let ζ ( t ) = t ( 1 t ) α 1 , t , s [ 0 , 1 ] . Then, there exist positive constants κ i ( i = 1 , 2 ) such that
κ 1 ζ ( s ) 0 1 K ( t , s ) ζ ( t ) d t κ 2 ζ ( s ) , s [ 0 , 1 ] ,
where
κ 1 = M 1 Γ 2 ( α + 1 ) Γ ( 2 α + 2 ) 1 + 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) , κ 2 = M 2 Γ ( α ) Γ ( α + 2 ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) .
Proof. 
We use Lemma 4 (ii)–(iii). Indeed, we have
0 1 K ( t , s ) ζ ( t ) d t 0 1 M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) ζ ( s ) ζ ( t ) d t = M 2 Γ ( α ) Γ ( α + 2 ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) ζ ( s ) , s [ 0 , 1 ] ,
and
0 1 K ( t , s ) ζ ( t ) d t 0 1 M 1 1 + 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) ζ ( s ) ( 1 t ) t α 1 ζ ( t ) d t = M 1 Γ 2 ( α + 1 ) Γ ( 2 α + 2 ) 1 + 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) ζ ( s ) , s [ 0 , 1 ] .
This completes the proof. □
Let E = C [ 0 , 1 ] be endowed with the maximum norm φ = max 0 t 1 | φ ( t ) | . Define a cone P by
P = { φ E : φ ( t ) 0 , t [ 0 , 1 ] } .
Lemma 6.
Let P 0 = φ P : φ ( t ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) κ 2 Γ ( α + 2 ) t α 1 φ . Then, L ( P ) P 0 , where
( L φ ) ( t ) = 0 1 K ( t , s ) φ ( s ) d s .
Proof. 
Let φ P . Then, from Lemma 4 (ii) and (iv) we have
( L φ ) ( t ) 0 1 M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) s ( 1 s ) α 1 φ ( s ) d s ,
and
( L φ ) ( t ) 0 1 M 1 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) t α 1 s ( 1 s ) α 1 φ ( s ) d s = M 1 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) t α 1 0 1 M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) s ( 1 s ) α 1 φ ( s ) d s M 1 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) t α 1 L φ = [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) κ 2 Γ ( α + 2 ) t α 1 L φ .
This completes the proof. □
To obtain our main results, we consider the following auxiliary problem
D 0 + α φ ( t ) + M φ ( t ) = f ( t , φ ( t ) ) , 0 < t < 1 , φ ( 0 ) = φ ( 0 ) = 0 , φ ( 1 ) = 0 1 φ ( t ) d β ( t ) ,
where f satisfies the condition:
(Hf) f C ( [ 0 , 1 ] × R + , R ) , and there exists Q C ( [ 0 , 1 ] , R + ) such that
f ( t , y ) Q ( t ) , t [ 0 , 1 ] , y R + .
From Lemma 2, (3) is equivalent to the following Hammerstein type integral equation
φ ( t ) = 0 1 K ( t , s ) f ( s , φ ( s ) ) d s .
Let w ( t ) = 0 1 K ( t , s ) Q ( s ) d s and
f ˜ ( t , y ) = f ( t , y ) + Q ( t ) , y 0 , f ( t , 0 ) + Q ( t ) , y < 0 .
From this, we obtain an integral equation
φ ( t ) = 0 1 K ( t , s ) f ˜ ( s , φ ( s ) w ( s ) ) d s .
Lemma 7
(i) If φ is a positive solution for (4), then φ + w is a positive solution for (5);
(ii) If φ is a positive solution for (5) and φ ( t ) w ( t ) , t [ 0 , 1 ] , then φ w is a positive solution for (4).
Proof. 
Note that
φ ( t ) = 0 1 K ( t , s ) f ( s , φ ( s ) ) d s .
Therefore, we have
φ ( t ) + w ( t ) = 0 1 K ( t , s ) f ( s , φ ( s ) ) d s + w ( t ) = 0 1 K ( t , s ) [ f ( s , φ ( s ) ) + Q ( s ) ] d s = 0 1 K ( t , s ) f ˜ ( s , φ ( s ) + w ( s ) w ( s ) ) d s .
Thus, φ + w is a positive solution for (5).
On the other hand, we have
φ ( t ) = 0 1 K ( t , s ) f ˜ ( s , φ ( s ) w ( s ) ) d s = 0 1 K ( t , s ) [ f ( s , φ ( s ) w ( s ) ) + Q ( s ) ] d s = 0 1 K ( t , s ) f ( s , φ ( s ) w ( s ) ) d s + w ( t ) ,
and thus
φ ( t ) w ( t ) = 0 1 K ( t , s ) f ( s , φ ( s ) w ( s ) ) d s .
This implies that φ w is a positive solution for (4). This completes the proof. □
From Lemma 7, we only study solutions of (5), which are greater than w. For this we define an operator A ˜ : P P as follows:
( A ˜ φ ) ( t ) = 0 1 K ( t , s ) f ˜ ( s , φ ( s ) w ( s ) ) d s ,
and we turn to study the fixed points of A ˜ , which also are required to be greater than w. If there exists φ P such that A ˜ φ = φ and φ ( t ) w ( t ) , t [ 0 , 1 ] , then this, together with Lemmas 2 and 6, implies that φ P 0 , and
φ ( t ) w ( t ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) κ 2 Γ ( α + 2 ) t α 1 φ 0 1 K ( t , s ) Q ( s ) d s [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) κ 2 Γ ( α + 2 ) t α 1 φ 0 1 t α 1 H ( 1 ) + H 2 ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) Q ( s ) d s = t α 1 [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) κ 2 Γ ( α + 2 ) φ H ( 1 ) + H 2 ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 Q ( s ) d s 0 ,
and
φ κ 2 Γ ( α + 2 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) H ( 1 ) + H 2 ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 Q ( s ) ζ ( s ) d s : = Θ Q .
As a result, there exists φ P such that A ˜ φ = φ with φ Θ Q , and then φ w is a positive solution for (4).
Now, we begin to study (1). Let f ¯ ( t , φ ( t ) , ϕ ( t ) ) = f ( t , φ ( t ) , ϕ ( t ) ) + M φ ( t ) , g ¯ ( t , φ ( t ) , ϕ ( t ) ) = g ( t , φ ( t ) , ϕ ( t ) ) + M ϕ ( t ) , t [ 0 , 1 ] . Then, (1) can be transformed into the following system of fractional-order integral boundary value problems
D 0 + α φ ( t ) + M φ ( t ) = f ¯ ( t , φ ( t ) , ϕ ( t ) ) , 0 < t < 1 , D 0 + α ϕ ( t ) + M ϕ ( t ) = g ¯ ( t , φ ( t ) , ϕ ( t ) ) , 0 < t < 1 , φ ( 0 ) = ϕ ( 0 ) = φ ( 0 ) = ϕ ( 0 ) = 0 , φ ( 1 ) = 0 1 φ ( t ) d β ( t ) , ϕ ( 1 ) = 0 1 ϕ ( t ) d β ( t ) ,
where f ¯ , g ¯ satisfy the condition:
(H1) f ¯ , g ¯ C ( [ 0 , 1 ] × R + × R + , R ) , and
f ¯ ( t , x , y ) Q f ( t ) , g ¯ ( t , x , y ) Q g ( t ) , t [ 0 , 1 ] , x , y R + .
From Lemma 2, (6) is equivalent to the following system of Hammerstein type integral equations
φ ( t ) = 0 1 K ( t , s ) f ¯ ( s , φ ( s ) , ϕ ( s ) ) d s , ϕ ( t ) = 0 1 K ( t , s ) g ¯ ( s , φ ( s ) , ϕ ( s ) ) d s .
In what follows, we establish an appropriate operator equation for problem (6). Note that E 2 = E × E is also a Banach space with norm ( φ , ϕ ) = φ + ϕ , and P 2 = P × P a cone on E 2 . Let
w 1 ( t ) = 0 1 K ( t , s ) Q f ( s ) d s , w 2 ( t ) = 0 1 K ( t , s ) Q g ( s ) d s , t [ 0 , 1 ] ,
and
A 1 ( φ , ϕ ) ( t ) = 0 1 K ( t , s ) f ˜ ( s , φ ( s ) w 1 ( s ) , ϕ ( s ) w 2 ( s ) ) d s , A 2 ( φ , ϕ ) ( t ) = 0 1 K ( t , s ) g ˜ ( s , φ ( s ) w 1 ( s ) , ϕ ( s ) w 2 ( s ) ) d s , A ( φ , ϕ ) ( t ) = ( A 1 , A 2 ) ( φ , ϕ ) ( t ) , t [ 0 , 1 ] ,
where
f ˜ ( t , φ , ϕ ) = f ¯ ( t , φ , ϕ ) + Q f ( t ) , φ , ϕ 0 , f ¯ ( t , 0 , ϕ ) + Q f ( t ) , φ < 0 , ϕ 0 , f ¯ ( t , φ , 0 ) + Q f ( t ) , φ 0 , ϕ < 0 , f ¯ ( t , 0 , 0 ) + Q f ( t ) , φ , ϕ < 0 ,
and
g ˜ ( t , φ , ϕ ) = g ¯ ( t , φ , ϕ ) + Q g ( t ) , φ , ϕ 0 , g ¯ ( t , 0 , ϕ ) + Q g ( t ) , φ < 0 , ϕ 0 , g ¯ ( t , φ , 0 ) + Q g ( t ) , φ 0 , ϕ < 0 , g ¯ ( t , 0 , 0 ) + Q g ( t ) , φ , ϕ < 0 .
It is clear that if there exists ( φ , ϕ ) P 2 such that A ( φ , ϕ ) = ( φ , ϕ ) with
φ ( t ) w 1 ( t ) , ϕ ( t ) w 2 ( t ) , t [ 0 , 1 ] ,
then ( φ w 1 , ϕ w 2 ) is a positive solution for (6).
Let
Θ Q f = κ 2 Γ ( α + 2 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) H ( 1 ) + H 2 ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 Q f ( s ) ζ ( s ) d s ,
and
Θ Q g = κ 2 Γ ( α + 2 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) H ( 1 ) + H 2 ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 Q g ( s ) ζ ( s ) d s .
Then, if φ Θ Q f and ϕ Θ Q g , we obtain that (8) holds true.
Lemma 8
(see [22]). Let E be a real Banach space and P a cone on E. Suppose that Ω E is a bounded open set and that A : Ω ¯ P P is a continuous compact operator. If there exists ω 0 P { 0 } such that
ω A ω λ ω 0 , λ 0 , ω Ω P ,
then i ( A , Ω P , P ) = 0 , where i denotes the fixed point index on P.
Lemma 9
(see [22]). Let E be a real Banach space and P a cone on E. Suppose that Ω E is a bounded open set with 0 Ω and that A : Ω ¯ P P is a continuous compact operator. If
ω λ A ω 0 , λ [ 0 , 1 ] , ω Ω P ,
then i ( A , Ω P , P ) = 1 .

3. Main Results

Let L k = H ( 1 ) + H 2 ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) . Now, we list the selection of assumptions for our nonlinearities.
(H4) There exist ξ 1 , η 1 C ( R + , R + ) such that
(i) ξ 1 is a strictly increasing concave function on R + ;
(ii) lim inf φ + f ¯ ( t , φ , ϕ ) ξ 1 ( ϕ ) 1 , lim inf ϕ + g ¯ ( t , φ , ϕ ) η 1 ( φ ) 1 uniformly for t [ 0 , 1 ] ;
(iii) There exists e 1 > κ 1 2 such that lim inf φ + ξ 1 ( L k η 1 ( φ ) ) φ e 1 L k .
(H5) There exist nonnegative functions O i ( i = 1 , 2 ) on [ 0 , 1 ] with 0 < 0 1 O 1 ( s ) ζ ( s ) d s < Θ Q f M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) and 0 < 0 1 O 2 ( s ) ζ ( s ) d s < Θ Q g M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) such that
f ˜ ( t , φ w 1 , ϕ w 2 ) O 1 ( t ) , g ˜ ( t , φ w 1 , ϕ w 2 ) O 2 ( t ) , t [ 0 , 1 ] , φ [ 0 , Θ Q f ] , ϕ [ 0 , Θ Q g ] .
(H6) There exist nonnegative functions O ˜ i ( i = 1 , 2 ) on [ 0 , 1 ] with 0 1 ζ ( s ) O ˜ 1 ( s ) d s > Θ Q f [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) M 1 0 1 ( 1 t ) t α 1 d β ( t ) and 0 1 ζ ( s ) O ˜ 2 ( s ) d s > Θ Q g [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) M 1 0 1 ( 1 t ) t α 1 d β ( t ) such that
f ˜ ( t , φ w 1 , ϕ w 2 ) O ˜ 1 ( t ) , g ˜ ( t , φ w 1 , ϕ w 2 ) O ˜ 2 ( t ) , t [ 0 , 1 ] , φ [ 0 , Θ Q f ] , ϕ [ 0 , Θ Q g ] .
(H7) There exist ξ 2 , η 2 C ( R + , R + ) such that
(i) ξ 2 is a strictly increasing convex function on R + ;
(ii) lim sup φ + f ¯ ( t , φ , ϕ ) ξ 2 ( ϕ ) 1 , lim sup ϕ + g ¯ ( t , φ , ϕ ) η 2 ( φ ) 1 uniformly for t [ 0 , 1 ] ;
(iii) There exists e 2 ( 0 , κ 2 2 ) such that lim sup φ + ξ 2 ( L k η 2 ( φ ) ) φ e 2 L k .
Theorem 1.
Suppose that (H1)–(H5) hold. Then, (1) has at least one positive solution.
Proof. 
Step 1. We shall prove that
( φ , ϕ ) λ A ( φ , ϕ ) , φ B Θ Q f P , ϕ B Θ Q g P , λ [ 0 , 1 ] ,
where B ρ = { φ E : φ < ρ } , ρ > 0 . Suppose the contrary. Then, there exist φ 1 B Θ Q f P , ϕ 1 B Θ Q g P and λ 1 [ 0 , 1 ] such that
( φ 1 , ϕ 1 ) = λ 1 A ( φ 1 , ϕ 1 ) .
This implies that
( φ 1 , ϕ 1 ) = λ 1 A ( φ 1 , ϕ 1 ) A ( φ 1 , ϕ 1 ) .
Note that φ 1 B Θ Q f P , ϕ 1 B Θ Q g P (i.e., φ 1 ( t ) Θ Q f , ϕ 1 ( t ) Θ Q g , t [ 0 , 1 ] ), and from (H5), we have
A 1 ( φ 1 , ϕ 1 ) ( t ) 0 1 M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) O 1 ( s ) ζ ( s ) d s < Θ Q f ,
and
A 2 ( φ 1 , ϕ 1 ) ( t ) 0 1 M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) O 2 ( s ) ζ ( s ) d s < Θ Q g .
Therefore, we have
A ( φ 1 , ϕ 1 ) < Θ Q f + Θ Q g = φ 1 + ϕ 1 = ( φ 1 , ϕ 1 ) .
This contradicts (10), and thus (9) holds. Hence, Lemma 9 implies that
i ( A , ( B Θ Q f × B Θ Q g ) ( P × P ) , P × P ) = 1 .
Step 2. We claim that there exist sufficiently large R 1 > Θ Q f , R 2 > Θ Q g such that
( φ , ϕ ) A ( φ , ϕ ) + λ ϱ 1 , ϱ 2 , φ B R 1 P , ϕ B R 2 P , λ 0 ,
where ϱ i ( i = 1 , 2 ) are fixed elements in P 0 . Assume the contrary. Then, there exist φ 2 B R 1 P , ϕ 2 B R 2 P , λ 2 0 such that
( φ 2 , ϕ 2 ) = A ( φ 2 , ϕ 2 ) + λ 2 ϱ 1 , ϱ 2 .
This implies that
φ 2 ( t ) = A 1 ( φ 2 , ϕ 2 ) ( t ) + λ 2 ϱ 1 ( t ) , ϕ 2 ( t ) = A 2 ( φ 2 , ϕ 2 ) ( t ) + λ 2 ϱ 2 ( t ) , t [ 0 , 1 ] .
Note that ϱ i P 0 ( i = 1 , 2 ) , and from Lemma 6 we have
φ 2 , ϕ 2 P 0 .
From (H4) (ii), we have
lim inf φ + f ˜ ( t , φ , ϕ ) ξ 1 ( ϕ ) 1 , lim inf ϕ + g ˜ ( t , φ , ϕ ) η 1 ( φ ) 1
uniformly for t [ 0 , 1 ] , and there exist c 1 > 0 and c 2 > 0 such that
f ˜ ( t , φ , ϕ ) ξ 1 ( ϕ ) c 1 , g ˜ ( t , φ , ϕ ) η 1 ( φ ) c 2 , t [ 0 , 1 ] , φ , ϕ R + .
From these inequalities, we have
φ 2 ( t ) A 1 ( φ 2 , ϕ 2 ) ( t ) 0 1 K ( t , s ) [ ξ 1 ( ϕ 2 ( s ) w 2 ( s ) ) c 1 ] d s 0 1 K ( t , s ) ξ 1 ( ϕ 2 ( s ) w 2 ( s ) ) d s c 1 L k ,
and
ϕ 2 ( t ) A 2 ( φ 2 , ϕ 2 ) ( t ) 0 1 K ( t , s ) [ η 1 ( φ 2 ( s ) w 1 ( s ) ) c 2 ] d s 0 1 K ( t , s ) η 1 ( φ 2 ( s ) w 1 ( s ) ) d s c 2 L k .
Consequently, we have
ϕ 2 ( t ) w 2 ( t ) 0 1 K ( t , s ) η 1 ( φ 2 ( s ) w 1 ( s ) ) d s c 2 L k M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 ζ ( s ) Q g ( s ) d s .
Let c 3 = c 2 L k + M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 ζ ( s ) Q g ( s ) d s . Then, we have
ξ 1 ( ϕ 2 ( t ) w 2 ( t ) ) ξ 1 ( ϕ 2 ( t ) w 2 ( t ) + c 3 ) ξ 1 ( c 3 ) ξ 1 0 1 K ( t , s ) η 1 ( φ 2 ( s ) w 1 ( s ) ) d s ξ 1 ( c 3 ) = ξ 1 0 1 K ( t , s ) L k L k η 1 ( φ 2 ( s ) w 1 ( s ) ) d s ξ 1 ( c 3 ) 0 1 K ( t , s ) L k ξ 1 ( L k η 1 ( φ 2 ( s ) w 1 ( s ) ) ) d s ξ 1 ( c 3 ) .
From (H4) (iii), there exists c 4 > 0 such that
ξ 1 ( L k η 1 ( φ ) ) e 1 L k φ c 4 L k , φ R + .
Hence, we obtain
ξ 1 ( ϕ 2 ( t ) w 2 ( t ) ) 0 1 K ( t , s ) L k [ e 1 L k ( φ 2 ( s ) w 1 ( s ) ) c 4 L k ] d s ξ 1 ( c 3 ) e 1 0 1 K ( t , s ) ( φ 2 ( s ) w 1 ( s ) ) d s ξ 1 ( c 3 ) c 4 L k ,
and then
φ 2 ( t ) 0 1 K ( t , s ) e 1 0 1 K ( s , τ ) ( φ 2 ( τ ) w 1 ( τ ) ) d τ ξ 1 ( c 3 ) c 4 L k d s c 1 L k e 1 0 1 0 1 K ( t , s ) K ( s , τ ) ( φ 2 ( τ ) w 1 ( τ ) ) d τ d s ξ 1 ( c 3 ) L k c 4 L k 2 c 1 L k .
Let c 5 = M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 ζ ( s ) Q f ( s ) d s + ξ 1 ( c 3 ) L k + c 4 L k 2 + c 1 L k . Then, we have
φ 2 ( t ) w 1 ( t ) e 1 0 1 0 1 K ( t , s ) K ( s , τ ) ( φ 2 ( τ ) w 1 ( τ ) ) d τ d s 0 1 K ( t , s ) Q f ( s ) d s ξ 1 ( c 3 ) L k c 4 L k 2 c 1 L k e 1 0 1 0 1 K ( t , s ) K ( s , τ ) ( φ 2 ( τ ) w 1 ( τ ) ) d τ d s c 5 .
Multiply by ζ ( t ) on both sides of the above, integrate over [ 0 , 1 ] and use Lemma 5 to obtain
0 1 ( φ 2 ( t ) w 1 ( t ) ) ζ ( t ) d t e 1 0 1 0 1 0 1 ζ ( t ) K ( t , s ) K ( s , τ ) ( φ 2 ( τ ) w 1 ( τ ) ) d τ d s d t c 5 0 1 ζ ( t ) d t e 1 κ 1 2 0 1 ( φ 2 ( t ) w 1 ( t ) ) ζ ( t ) d t c 5 Γ ( α ) Γ ( α + 2 ) .
Solving this inequality, we obtain
0 1 ( φ 2 ( t ) w 1 ( t ) ) ζ ( t ) d t c 5 Γ ( α ) ( e 1 κ 1 2 1 ) Γ ( α + 2 ) .
Note that φ 2 P 0 , we have
0 1 φ 2 [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) κ 2 Γ ( α + 2 ) t α 1 ζ ( t ) d t 0 1 φ 2 ( t ) ζ ( t ) d t c 5 Γ ( α ) ( e 1 κ 1 2 1 ) Γ ( α + 2 ) + κ 2 0 1 Q f ( t ) ζ ( t ) d t ,
and
φ 2 κ 2 Γ ( α + 2 ) Γ ( 2 α + 1 ) c 5 Γ ( α ) ( e 1 κ 1 2 1 ) Γ ( α + 2 ) + κ 2 0 1 Q f ( t ) ζ ( t ) d t [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ 2 ( α ) Γ ( α + 1 ) : = N φ 2 .
Multiply by ζ ( t ) on both sides of (13), integrate over [ 0 , 1 ] and use Lemma 5 to obtain
κ 1 0 1 ζ ( t ) ξ 1 ( ϕ 2 ( t ) w 2 ( t ) ) d t 0 1 ζ ( t ) ( φ 2 ( t ) + c 1 L k ) d t c 5 Γ ( α ) ( e 1 κ 1 2 1 ) Γ ( α + 2 ) + κ 2 0 1 Q f ( t ) ζ ( t ) d t + c 1 L k Γ ( α ) Γ ( α + 2 ) .
Note that ϕ 2 , w 2 P 0 and ϕ 2 = R 2 > Θ Q g , then ϕ 2 w 2 P 0 . By the concavity of ξ 1 , we have
ϕ 2 w 2 κ 2 Γ ( α + 2 ) Γ ( 2 α + 1 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ 2 ( α ) Γ ( α + 1 ) 0 1 ζ ( t ) ( ϕ 2 ( t ) w 2 ( t ) ) d t = κ 2 Γ ( α + 2 ) Γ ( 2 α + 1 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ 2 ( α ) Γ ( α + 1 ) ϕ 2 w 2 ξ 1 ( ϕ 2 w 2 ) 0 1 ϕ 2 ( t ) w 2 ( t ) ϕ 2 w 2 ζ ( t ) ξ 1 ( ϕ 2 w 2 ) d t κ 2 Γ ( α + 2 ) Γ ( 2 α + 1 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ 2 ( α ) Γ ( α + 1 ) ϕ 2 w 2 ξ 1 ( ϕ 2 w 2 ) 0 1 ζ ( t ) ξ 1 ϕ 2 ( t ) w 2 ( t ) ϕ 2 w 2 ϕ 2 w 2 d t κ 2 Γ ( α + 2 ) Γ ( 2 α + 1 ) κ 1 [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ 2 ( α ) Γ ( α + 1 ) ϕ 2 w 2 ξ 1 ( ϕ 2 w 2 ) c 5 Γ ( α ) ( e 1 κ 1 2 1 ) Γ ( α + 2 ) + κ 2 0 1 Q f ( t ) ζ ( t ) d t + c 1 L k Γ ( α ) Γ ( α + 2 ) ,
and thus,
ξ 1 ( ϕ 2 w 2 ) κ 2 Γ ( α + 2 ) Γ ( 2 α + 1 ) κ 1 [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ 2 ( α ) Γ ( α + 1 ) c 5 Γ ( α ) ( e 1 κ 1 2 1 ) Γ ( α + 2 ) + κ 2 0 1 Q f ( t ) ζ ( t ) d t + c 1 L k Γ ( α ) Γ ( α + 2 ) .
Therefore, we have
ξ 1 ( ϕ 2 ) = ξ 1 ( ϕ 2 w 2 + w 2 ) ξ 1 ( ϕ 2 w 2 + w 2 ) ξ 1 ( ϕ 2 w 2 ) + ξ 1 ( w 2 ) κ 2 Γ ( α + 2 ) Γ ( 2 α + 1 ) κ 1 [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ 2 ( α ) Γ ( α + 1 ) c 5 Γ ( α ) ( e 1 κ 1 2 1 ) Γ ( α + 2 ) + κ 2 0 1 Q f ( t ) ζ ( t ) d t + c 1 L k Γ ( α ) Γ ( α + 2 ) + ξ 1 ( w 2 ) < + .
Note that ξ 1 is a strictly increasing function, and there exits N ϕ 2 > 0 such that
ϕ 2 N ϕ 2 .
Now, if we choose R 1 > max { Θ Q f , N φ 2 } , R 2 > max { Θ Q g and N ϕ 2 } , then (12) is satisfied. Hence, Lemma 8 implies that
i ( A , ( B R 1 × B R 2 ) ( P × P ) , P × P ) = 0 .
From (11) and (15), we have
i ( A , ( B R 1 × B R 2 ) ( B Θ Q f × B Θ Q g ¯ ) ( P × P ) , P × P ) = i ( A , ( B R 1 × B R 2 ) ( P × P ) , P × P ) i ( A , ( B Θ Q f × B Θ Q g ) ( P × P ) , P × P ) = 1 .
Therefore, there exits ( φ , ϕ ) in ( B R 1 × B R 2 ) ( B Θ Q f × B Θ Q g ¯ ) ( P × P ) such that A ( φ , ϕ ) = ( φ , ϕ ) . Note that φ ( t ) w 1 ( t ) , ϕ ( t ) w 2 ( t ) , t [ 0 , 1 ] , and thus ( φ w 1 , ϕ w 2 ) is a positive solution for (1). Thus, (1) has at least one positive solution. This completes the proof. □
Theorem 2.
Suppose that (H1)–(H3) and (H6)–(H7) hold. Then, (1) has at least one positive solution.
Proof. 
Step 1. We shall verify
( φ , ϕ ) A ( φ , ϕ ) + λ ϱ 3 , ϱ 4 , λ 0 , φ B Θ Q f P , ϕ B Θ Q g P ,
where ϱ i ( i = 3 , 4 ) are given elements in P. Assume the contrary. Suppose there exist φ 3 B Θ Q f P , ϕ 3 B Θ Q g P and λ 3 0 such that
( φ 3 , ϕ 3 ) = A ( φ 3 , ϕ 3 ) + λ 3 ϱ 3 , ϱ 4 .
This implies that
φ 3 ( t ) = A 1 ( φ 3 , ϕ 3 ) ( t ) + λ 3 ϱ 3 ( t ) A 1 ( φ 3 , ϕ 3 ) ( t ) ,
and
ϕ 3 ( t ) = A 2 ( φ 3 , ϕ 3 ) ( t ) + λ 3 ϱ 4 ( t ) A 2 ( φ 3 , ϕ 3 ) ( t ) .
From these inequalities, we have
φ 3 A 1 ( φ 3 , ϕ 3 ) , ϕ 3 A 2 ( φ 3 , ϕ 3 ) ,
and then
( φ 3 , ϕ 3 ) = φ 3 + ϕ 3 A 1 ( φ 3 , ϕ 3 ) + A 2 ( φ 3 , ϕ 3 ) = A ( φ 3 , ϕ 3 ) .
On the other hand, from (H6), we have
A 1 ( φ 3 , ϕ 3 ) = max t [ 0 , 1 ] A 1 ( φ 3 , ϕ 3 ) ( t ) max t [ 0 , 1 ] 0 1 M 1 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) t α 1 ζ ( s ) O ˜ 1 ( s ) d s > Θ Q f ,
and
A 2 ( φ 3 , ϕ 3 ) = max t [ 0 , 1 ] A 2 ( φ 3 , ϕ 3 ) ( t ) max t [ 0 , 1 ] 0 1 M 1 0 1 ( 1 t ) t α 1 d β ( t ) [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α ) t α 1 ζ ( s ) O ˜ 2 ( s ) d s > Θ Q g .
These two inequalities imply that
A ( φ 3 , ϕ 3 ) = A 1 ( φ 3 , ϕ 3 ) + A 2 ( φ 3 , ϕ 3 ) > Θ Q f + Θ Q g = ( φ 3 , ϕ 3 ) .
This contradicts (17). Hence, Lemma 8 implies that
i ( A , ( B Θ Q f × B Θ Q g ) ( P × P ) , P × P ) = 0 .
Step 2. We claim that there exist sufficiently large R 3 > Θ Q f and R 4 > Θ Q g such that
( φ , ϕ ) λ A ( φ , ϕ ) , λ [ 0 , 1 ] , φ B R 3 P , ϕ B R 4 P .
Suppose the contrary. Then, there exist φ 4 B R 3 P , ϕ 4 B R 4 P and λ 4 [ 0 , 1 ] such that
( φ 4 , ϕ 4 ) = λ 4 A ( φ 4 , ϕ 4 ) .
Combining with Lemma 6 gives that
φ 4 , ϕ 4 P 0 .
From (H7), we have
lim sup φ + f ˜ ( t , φ , ϕ ) ξ 2 ( ϕ ) 1 , lim sup ϕ + g ˜ ( t , φ , ϕ ) η 2 ( φ ) 1
uniformly for t [ 0 , 1 ] , and there exists M ˜ 4 > 0 such that
f ˜ ( t , φ , ϕ ) ξ 2 ( ϕ ) , g ˜ ( t , φ , ϕ ) η 2 ( φ ) , for φ , ϕ M ˜ 4 .
Let R 3 , R 4 > M ˜ 4 . Then, from (20), we have
φ 4 ( t ) A 1 ( φ 4 , ϕ 4 ) ( t ) 0 1 K ( t , s ) ξ 2 ( ϕ 4 ( s ) w 2 ( s ) ) d s ,
and
ϕ 4 ( t ) A 2 ( φ 4 , ϕ 4 ) ( t ) 0 1 K ( t , s ) η 2 ( φ 4 ( s ) w 1 ( s ) ) d s .
Note that from (H7) (iii), there exists c 6 > 0 such that
ξ 2 ( L k η 2 ( φ ) ) e 2 L k φ + c 6 L k , φ R + .
Therefore, from (H7) (i) we have
ξ 2 ( ϕ 4 ( t ) w 2 ( t ) ) ξ 2 0 1 K ( t , s ) η 2 ( φ 4 ( s ) w 1 ( s ) ) d s = ξ 2 0 1 K ( t , s ) L k L k η 2 ( φ 4 ( s ) w 1 ( s ) ) d s 0 1 K ( t , s ) L k ξ 2 ( L k η 2 ( φ 4 ( s ) w 1 ( s ) ) ) d s 0 1 K ( t , s ) L k [ e 2 L k ( φ 4 ( s ) w 1 ( s ) ) + c 6 L k ] d s e 2 0 1 K ( t , s ) φ 4 ( s ) d s + c 6 L k ,
and thus
φ 4 ( t ) 0 1 K ( t , s ) e 2 0 1 K ( s , τ ) φ 4 ( τ ) d τ + c 6 L k d s .
Multiply by ζ ( t ) on both sides of the above, integrate over [ 0 , 1 ] and use Lemma 5 to obtain
0 1 φ 4 ( t ) ζ ( t ) d t 0 1 ζ ( t ) 0 1 K ( t , s ) e 2 0 1 K ( s , τ ) φ 4 ( τ ) d τ + c 6 L k d s d t e 2 κ 2 2 0 1 φ 4 ( t ) ζ ( t ) d t + c 6 L k κ 2 Γ ( α ) Γ ( α + 2 ) .
Solving this inequality, we obtain
0 1 φ 4 ( t ) ζ ( t ) d t c 6 L k κ 2 Γ ( α ) ( 1 e 2 κ 2 2 ) Γ ( α + 2 ) .
Note that φ 4 P 0 and we have
φ 4 c 6 L k κ 2 2 Γ ( 2 α + 1 ) ( 1 e 2 κ 2 2 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) Γ ( α + 1 ) .
On the other hand, from Lemma 4 (ii), we have
ξ 2 ( ϕ 4 ( t ) w 2 ( t ) ) e 2 0 1 M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) ζ ( s ) φ 4 ( s ) d s + c 6 L k M 2 e 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) c 6 L k κ 2 Γ ( α ) ( 1 e 2 κ 2 2 ) Γ ( α + 2 ) + c 6 L k .
This implies that there exists N ϕ 4 > 0 such that
ϕ 4 w 2 N ϕ 4 ,
and thus
ϕ 4 = ϕ 4 w 2 + w 2 ϕ 4 w 2 + w 2 N ϕ 4 + M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 ζ ( s ) Q g ( s ) d s .
Now, if we choose
R 3 > max Θ Q f , M ˜ 4 , c 6 L k κ 2 2 Γ ( 2 α + 1 ) ( 1 e 2 κ 2 2 ) [ κ 1 Γ ( 2 α + 2 ) Γ 2 ( α + 1 ) M 1 ] Γ ( α ) Γ ( α + 1 )
and
R 4 > max Θ Q g , M ˜ 4 , N ϕ 4 + M 2 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) 0 1 ζ ( s ) Q g ( s ) d s ,
then (19) holds. Hence, Lemma 9 implies that
i ( A , ( B R 3 × B R 4 ) ( P × P ) , P × P ) = 1 .
From (18) and (21) we have
i ( A , ( B R 3 × B R 4 ) ( B Θ Q f × B Θ Q g ¯ ) ( P × P ) , P × P ) = i ( A , ( B R 3 × B R 4 ) ( P × P ) , P × P ) i ( A , ( B Θ Q f × B Θ Q g ) ( P × P ) , P × P ) = 1 .
Therefore, there exits ( φ , ϕ ) in ( B R 3 × B R 4 ) ( B Θ Q f × B Θ Q g ¯ ) ( P × P ) such that A ( φ , ϕ ) = ( φ , ϕ ) . Note that φ ( t ) w 1 ( t ) , ϕ ( t ) w 2 ( t ) , t [ 0 , 1 ] , and thus ( φ w 1 , ϕ w 2 ) is a positive solution for (1). Thus, (1) has at least one positive solution. This completes the proof. □
Example 1.
Let ξ 1 ( ϕ ) = ϕ 4 5 , η 1 ( φ ) = φ 2 and φ , ϕ R + . Then, we have
lim inf φ + ξ 1 ( L k η 1 ( φ ) ) φ = lim inf φ + L k 4 5 φ 8 5 φ = + .
Thus, (H4) (i) and (iii) hold.
Take
f ˜ ( t , φ , ϕ ) = 1 t | sin φ | + 2 Θ Q f Γ ( α + 2 ) Θ Q g M 2 Γ ( α ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) ϕ , t [ 0 , 1 ] , φ , ϕ R + ,
and
g ˜ ( t , φ , ϕ ) = 1 t | cos ϕ | + 3 Θ Q g Γ ( α + 2 ) M 2 Γ ( α ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) Θ Q f 3 φ 3 , t [ 0 , 1 ] , φ , ϕ R + .
Then, when t [ 0 , 1 ] , φ [ 0 , Θ Q f ] and ϕ [ 0 , Θ Q g ] , we have
f ˜ ( t , φ , ϕ ) 1 2 Θ Q f Γ ( α + 2 ) M 2 Γ ( α ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) O 1 ( t ) , t [ 0 , 1 ] ,
and
g ˜ ( t , φ , ϕ ) 1 3 Θ Q g Γ ( α + 2 ) M 2 Γ ( α ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) O 2 ( t ) , t [ 0 , 1 ] .
On the other hand,
lim inf φ + f ˜ ( t , φ , ϕ ) ξ 1 ( ϕ ) = lim inf φ + 1 t | sin φ | + 2 Θ Q f Γ ( α + 2 ) Θ Q g M 2 Γ ( α ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) ϕ ϕ 4 5 = + ,
and
lim inf ϕ + g ˜ ( t , φ , ϕ ) η 1 ( φ ) = lim inf ϕ + 1 t | cos ϕ | + 3 Θ Q g Γ ( α + 2 ) M 2 Γ ( α ) 1 + H ( 1 ) β ( 1 ) H ( 1 ) 0 1 H ( t ) d β ( t ) Θ Q f 3 φ 3 φ 2 = +
uniformly for t [ 0 , 1 ] . Therefore, (H4) (ii) and (H5) hold.
Example 2.
Let ξ 2 ( ϕ ) = ϕ 2 , η 2 ( φ ) = φ 2 5 and φ , ϕ R + . Then, lim sup φ + ξ 2 ( L k η 2 ( φ ) ) φ = lim sup φ + L k 2 φ 4 5 φ = 0 . Thus, (H7) (i) and (iii) hold. Take
O ˜ 1 ( t ) 2 Θ Q f [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α + 2 ) M 1 0 1 ( 1 t ) t α 1 d β ( t ) , t [ 0 , 1 ] ,
O ˜ 2 ( t ) 3 Θ Q g [ H ( 1 ) 0 1 H ( t ) d β ( t ) ] Γ ( α + 2 ) M 1 0 1 ( 1 t ) t α 1 d β ( t ) , t [ 0 , 1 ] ,
f ˜ ( t , φ , ϕ ) = O ˜ 1 ( t ) + ( ϕ + t | cos φ | ) γ 1 , t [ 0 , 1 ] , φ , ϕ R + ,
and
g ˜ ( t , φ , ϕ ) = O ˜ 2 ( t ) + ( φ + t | sin ϕ | ) γ 2 , t [ 0 , 1 ] , φ , ϕ R + ,
where γ 1 ( 0 , 2 ) , γ 2 ( 0 , 2 5 ) . Note that when t [ 0 , 1 ] , φ [ 0 , Θ Q f ] and ϕ [ 0 , Θ Q g ] , we have
f ˜ ( t , φ , ϕ ) O ˜ 1 ( t ) , g ˜ ( t , φ , ϕ ) O ˜ 2 ( t ) , t [ 0 , 1 ] .
Moreover,
lim sup φ + f ˜ ( t , φ , ϕ ) ξ 2 ( ϕ ) = lim sup φ + O ˜ 1 ( t ) + ( ϕ + t | cos φ | ) γ 1 ϕ 2 = 0 ,
and
lim sup ϕ + g ˜ ( t , φ , ϕ ) η 2 ( φ ) = lim sup ϕ + O ˜ 2 ( t ) + ( φ + t | sin ϕ | ) γ 2 φ 2 5 = 0
uniformly for t [ 0 , 1 ] . Therefore, (H7) (ii) and (H6) hold.

4. Conclusions

In this paper, we used the fixed-point index to study the existence of positive solutions for the system (1) of Riemann–Liouville type fractional-order integral boundary value problems. Note our nonlinearities could be sign-changing, and some concave and convex functions were used to characterize their coupling behaviors. The results obtained here improved some existing results in the literature.

Author Contributions

Conceptualization, K.Z., F.S.A., J.X. and D.O.; formal analysis, K.Z., F.S.A., J.X. and D.O.; writing original draft preparation, K.Z., F.S.A., J.X. and D.O.; writing review and editing, K.Z., F.S.A., J.X. and D.O.; funding acquisition, K.Z., F.S.A., J.X. and D.O. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by Natural Science Foundation of Chongqing (grant No. cstc2020jcyj-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (grant no. KJQN202000528). The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program no RP-21-09-08.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wang, Y. The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Adv. Differ. Equ. 2020, 2020, 80. [Google Scholar] [CrossRef]
  2. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  3. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  4. Wang, Y.; Liu, L.; Zhang, X.; Wu, Y. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput. 2015, 258, 312–324. [Google Scholar] [CrossRef]
  5. Yang, W. Positive solutions for nonlinear semipositone fractional q-difference system with coupled integral boundary conditions. Appl. Math. Comput. 2014, 244, 702–725. [Google Scholar] [CrossRef]
  6. Henderson, J.; Luca, R.; Tudorache, A. Positive solutions for a system of coupled semipositone fractional boundary value problems with sequential fractional derivatives. Mathematics 2021, 9, 753. [Google Scholar] [CrossRef]
  7. Luca, R.; Tudorache, A. Positive solutions to a system of semipositone fractional boundary value problems. Adv. Differ. Equ. 2014, 2014, 179. [Google Scholar] [CrossRef]
  8. Henderson, J.; Luca, R. Existence of positive solutions for a system of semipositone fractional boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2016, 2016, 1–28. [Google Scholar] [CrossRef]
  9. Tudorache, A.; Luca, R. Existence of positive solutions for a semipositone boundary value problem with sequential fractional derivatives. Math. Methods Appl. Sci. 2021, 44, 14451–14469. [Google Scholar] [CrossRef]
  10. Henderson, J.; Luca, R. Positive solutions for a system of semipositone coupled fractional boundary value problems. Bound. Value Probl. 2016, 2016, 61. [Google Scholar] [CrossRef]
  11. Agarwal, R.P.; Luca, R. Positive solutions for a semipositone singular Riemann–Liouville fractional differential problem. Int. J. Nonlinear Sci. Numer. Simul. 2019, 20, 823–831. [Google Scholar] [CrossRef]
  12. Xu, J.; Goodrich, C.S.; Cui, Y. Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser.-Mat. 2019, 113, 1343–1358. [Google Scholar] [CrossRef]
  13. Ding, Y.; Xu, J.; Fu, Z. Positive solutions for a system of fractional integral boundary value problems of Riemann–Liouville type involving semipositone nonlinearities. Mathematics 2019, 7, 970. [Google Scholar] [CrossRef]
  14. Zhong, Q.; Zhang, X.; Gu, L.; Lei, L.; Zhao, Z. Multiple positive solutions for singular higher-order semipositone fractional differential equations with p-Laplacian. Nonlinear Anal.-Model. Control 2020, 25, 806–826. [Google Scholar] [CrossRef]
  15. Qiu, X.; Xu, J.; O’Regan, D.; Cui, Y. Positive solutions for a system of nonlinear semipositone boundary value problems with Riemann–Liouville fractional derivatives. J. Funct. Spaces 2018, 2018, 7351653. [Google Scholar] [CrossRef]
  16. Xu, X.; Zhang, H. Multiple positive solutions to singular positone and semipositone m-point boundary value problems of nonlinear fractional differential equations. Bound. Value Probl. 2018, 2018, 34. [Google Scholar] [CrossRef]
  17. Xie, D.; Bai, C.; Zhou, H.; Liu, Y. Positive solutions for a coupled system of semipositone fractional differential equations with the integral boundary conditions. Eur. Phys.-J. Top. 2017, 226, 3551–3566. [Google Scholar] [CrossRef]
  18. Salem, A.; Almaghamsi, L. Existence solution for coupled system of Langevin fractional differential equations of Caputo type with Riemann-Stieltjes integral boundary conditions. Symmetry 2021, 13, 2123. [Google Scholar] [CrossRef]
  19. Zhao, D.; Mao, J. Positive solutions for a class of nonlinear singular fractional differential systems with Riemann-Stieltjes coupled integral boundary value conditions. Symmetry 2021, 13, 107. [Google Scholar] [CrossRef]
  20. Alruwaily, Y.; Ahmad, B.; Ntouyas, S.K.; Alzaidi, A.S.M. Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann-Stieltjes integro-multipoint boundary conditions. Fractal Fract. 2022, 6, 123. [Google Scholar] [CrossRef]
  21. Wang, Y.; Liu, L. Positive properties of the Green function for two-term fractional differential equations and its application. J. Nonlinear Sci. Appl. 2017, 10, 2094–2102. [Google Scholar] [CrossRef] [Green Version]
  22. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhang, K.; Alshammari, F.S.; Xu, J.; O’Regan, D. Positive Solutions for a System of Riemann–Liouville Type Fractional-Order Integral Boundary Value Problems. Fractal Fract. 2022, 6, 480. https://doi.org/10.3390/fractalfract6090480

AMA Style

Zhang K, Alshammari FS, Xu J, O’Regan D. Positive Solutions for a System of Riemann–Liouville Type Fractional-Order Integral Boundary Value Problems. Fractal and Fractional. 2022; 6(9):480. https://doi.org/10.3390/fractalfract6090480

Chicago/Turabian Style

Zhang, Keyu, Fehaid Salem Alshammari, Jiafa Xu, and Donal O’Regan. 2022. "Positive Solutions for a System of Riemann–Liouville Type Fractional-Order Integral Boundary Value Problems" Fractal and Fractional 6, no. 9: 480. https://doi.org/10.3390/fractalfract6090480

APA Style

Zhang, K., Alshammari, F. S., Xu, J., & O’Regan, D. (2022). Positive Solutions for a System of Riemann–Liouville Type Fractional-Order Integral Boundary Value Problems. Fractal and Fractional, 6(9), 480. https://doi.org/10.3390/fractalfract6090480

Article Metrics

Back to TopTop