A Cubic Spline Collocation Method to Solve a Nonlinear Space-Fractional Fisher’s Equation and Its Stability Examination
Abstract
:1. Introduction
2. Derivation of the Method
3. Stability Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagley, R.L.; Torvik, P.J. Fractional calculus in the transient analysis of viscoelasticity damped structures. AIAA J. 1985, 23, 918–925. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Cheng, X.; Duan, J.; Li, D. A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations. Appl. Math. Comput. 2019, 346, 452–464. [Google Scholar] [CrossRef]
- Hadhoud, A.R.; Rageh, A.A.M.; Radwan, T. Computational solution of the time-fractional Schrödinger equation by using trigonometric B-spline collocation method. Fractal Fract. 2022, 6, 127. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Z. The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction–diffusion equations with variable coefficients. Comput. Math. Appl. 2018, 75, 3558–3570. [Google Scholar] [CrossRef]
- Kumar, D.; Nisar, K.S. A novel linearized Galerkin finite element scheme with fractional Crank–Nicolson method for the nonlinear coupled delay subdiffusion system with smooth solutions. Math. Methods Appl. Sci. 2022, 45, 1377–1401. [Google Scholar] [CrossRef]
- Hadhoud, A.R.; Alaal, F.E.; Abdelaziz, A.A.; Radwan, T. Numerical treatment of the generalized time—fractional Huxley—Burgers ’ equation and its stability examination. Demonstr. Math. 2021, 54, 436–451. [Google Scholar] [CrossRef]
- Hadhoud, A.R.; Abd Alaal, F.E.; Abdelaziz, A.A. On the numerical investigations of the time-fractional modified Burgers’ equation with conformable derivative, and its stability analysis. J. Math. Comput. Sci. 2021, 12, 36. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Ray, S.S.; Bera, R.K. An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. Appl. Math. Comput. 2005, 167, 561–571. [Google Scholar]
- Zhang, Y.; Sun, Z.Z.; Liao, H.L. Finite difference methods for the time-fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 2014, 265, 195–210. [Google Scholar] [CrossRef]
- Elsaid, A. The variational iteration method for solving Riesz fractional partial differential equations. Comput. Math. Appl. 2010, 60, 1940–1947. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Zaky, M.A.; Baleanu, D. New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 2015, 67, 340–349. [Google Scholar]
- Javeed, S.; Baleanu, D.; Waheed, A.; Khan, M.S.; Affan, H. Analysis of homotopy perturbation method for solving fractional order differential equations. Mathematics 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Ozdemir, N. Numerical inverse Laplace homotopy technique for fractional heat equations. Therm. Sci. 2018, 22, S185–S194. [Google Scholar] [CrossRef]
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1937, 7, 355–369. [Google Scholar] [CrossRef]
- Malfliet, W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 1992, 60, 650–654. [Google Scholar] [CrossRef]
- Canosa, J. Diffusion in nonlinear multiplicative media. J. Math. Phys. 1969, 10, 1862–1868. [Google Scholar] [CrossRef]
- Majeed, A.; Kamran, M.; Iqbal, M.K.; Baleanu, D. Solving time fractional Burgers’ and Fisher’s equations using cubic B-spline approximation method. Adv. Differ. Equ. 2020, 2020, 175. [Google Scholar] [CrossRef]
- Khader, M.M.; Saad, K.M. A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos Solitons Fractals 2018, 110, 169–177. [Google Scholar] [CrossRef]
- Wang, X.Y. Exact and explicit solitary wave solutions for the generalised Fisher equation. Phys. Lett. A 1988, 131, 277–279. [Google Scholar] [CrossRef]
- Tyson, J.J.; Brazhnik, P.K. On traveling wave solutions of Fisher’s equation in two spatial dimensions. SIAM J. Appl. Math. 2000, 60, 371–391. [Google Scholar] [CrossRef]
- El-Danaf, T.S.; Hadhoud, A.R. Computational method for solving space fractional Fisher’s nonlinear equation. Math. Methods Appl. Sci. 2014, 37, 657–662. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor’s formula. J. Comput. Appl. Math. 2008, 220, 85–95. [Google Scholar] [CrossRef]
- Vanani, S.K.; Aminataei, A. On the numerical solution of fractional partial differential equations. Math. Comput. Appl. 2012, 17, 140–151. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, S.; Li, X. Legendre collocation spectral method for solving space fractional nonlinear fisher’s equation. Commun. Comput. Inf. Sci. 2016, 643, 245–252. [Google Scholar]
- Caputo, M.C.; Torres, D.F.M. Duality for the left and right fractional derivatives. Signal Processing 2015, 107, 265–271. [Google Scholar] [CrossRef]
- Zahra, W.K.; Elkholy, S.M. Quadratic spline solution for boundary value problem of fractional order. Numer. Algorithms 2012, 59, 373–391. [Google Scholar] [CrossRef]
- Liu, J.; Fu, H.; Chai, X.; Sun, Y.; Guo, H. Stability and convergence analysis of the quadratic spline collocation method for time-dependent fractional diffusion equations. Appl. Math. Comput. 2019, 346, 633–648. [Google Scholar] [CrossRef]
- Pitolli, F.; Sorgentone, C.; Pellegrino, E. Approximation of the Riesz–Caputo Derivative by Cubic Splines. Algorithms 2022, 15, 69. [Google Scholar] [CrossRef]
- Shui-Ping, Y.; Ai-Guo, X. Cubic Spline Collocation Method for Fractional Differential Equations. J. Appl. Math. 2013, 2013, 20. [Google Scholar]
- Akram, T.; Abbas, M.; Ismail, A.I.; Ali, N.H.M.; Baleanu, D. Extended cubic B-splines in the numericalsolution of time fractional telegraph equation. Adv. Differ. Equ. 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Madiha, S.; Muhammad, A.; Farah, A.A.; Abdul, M.; Thabet, A.; Manar, A.A. Numerical solutions of time fractional Burgers’ equation involving Atangana–Baleanu derivative via cubic B-spline functions. Results Phys. 2022, 34, 105244. [Google Scholar]
- Schumaker, L. Spline Functions, Basic Theory.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1981. [Google Scholar]
- Ahlberg, J.H.; Nilson, E.N.; Walsh, J.L. The Theory of Splines and their Applications. In Mathematics in Science and Engineering; Academic Press: Cambridge, MA, USA, 1967; Available online: https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/38/suppl/C (accessed on 19 July 2022).
- El-Danaf, T.S.; Ramadan, M.A.; Abd Alaal, F.E.I. Numerical studies of the cubic non-linear Schrodinger equation. Nonlinear Dyn. 2012, 67, 619–627. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Lashien, I.F.; Zahra, W.K. Polynomial and nonpolynomial spline approaches to the numerical solution of second order boundary value problems. Appl. Math. Comput. 2007, 184, 476–484. [Google Scholar] [CrossRef]
- Ramadan, M.A.; El-Danaf, T.S.; Abd Alaal, F.E.I. A numerical solution of the Burgers’ equation using septic B-splines. Chaos Solitons Fractals 2005, 26, 1249–1258. [Google Scholar] [CrossRef]
x | Present Method | VIM [18] | GDTM [18] | QPSM [17] |
---|---|---|---|---|
0.0 | ||||
0.220589 | 0.220348 | 0.210917 | ||
0.440329 | 0.439957 | 0.425837 | ||
0.659214 | 0.658707 | 0.645538 | ||
0.8 | 0.877185 | 0.876585 | 0.869671 | |
1.094096 | 1.093587 | 1.093920 |
x | Present Method | VIM [18] | GDTM [18] | QPSM [17] |
---|---|---|---|---|
0.0 | ||||
0.242240 | 0.240212 | 0.223360 | ||
0.480928 | 0.477796 | 0.453229 | ||
0.716018 | 0.711692 | 0.691755 | ||
0.8 | 0.947058 | 0.941796 | 0.936764 | |
1.172904 | 1.168067 | 1.173100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadhoud, A.R.; Abd Alaal, F.E.; Abdelaziz, A.A.; Radwan, T. A Cubic Spline Collocation Method to Solve a Nonlinear Space-Fractional Fisher’s Equation and Its Stability Examination. Fractal Fract. 2022, 6, 470. https://doi.org/10.3390/fractalfract6090470
Hadhoud AR, Abd Alaal FE, Abdelaziz AA, Radwan T. A Cubic Spline Collocation Method to Solve a Nonlinear Space-Fractional Fisher’s Equation and Its Stability Examination. Fractal and Fractional. 2022; 6(9):470. https://doi.org/10.3390/fractalfract6090470
Chicago/Turabian StyleHadhoud, Adel R., Faisal E. Abd Alaal, Ayman A. Abdelaziz, and Taha Radwan. 2022. "A Cubic Spline Collocation Method to Solve a Nonlinear Space-Fractional Fisher’s Equation and Its Stability Examination" Fractal and Fractional 6, no. 9: 470. https://doi.org/10.3390/fractalfract6090470
APA StyleHadhoud, A. R., Abd Alaal, F. E., Abdelaziz, A. A., & Radwan, T. (2022). A Cubic Spline Collocation Method to Solve a Nonlinear Space-Fractional Fisher’s Equation and Its Stability Examination. Fractal and Fractional, 6(9), 470. https://doi.org/10.3390/fractalfract6090470