Strong Solution for Fractional Mean Field Games with Non-Separable Hamiltonians
Abstract
:1. Introduction
2. Preliminaries
3. Main Result and Its Proof
3.1. Strong Solution Formulation
3.2. Main Theorem
4. The Payoff Problem
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lasry, J.-M.; Lions, P.-L. Jeux à champ moyen. I-le cas stationnaire. C. R. Math. Acad. Sci. Paris 2006, 343, 619–625. [Google Scholar] [CrossRef]
- Lasry, J.-M.; Lions, P.-L. Jeux à champ moyen. II-Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 2006, 343, 679–684. [Google Scholar] [CrossRef]
- Lasry, J.-M.; Lions, P.-L. Mean field games. Jpn. J. Math. 2007, 2, 229–260. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Caines, P.E.; Malham, R.P. Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Automat. Contr. 2007, 52, 1560–1571. [Google Scholar] [CrossRef]
- Lachapelle, A.; Salomon, J.; Turinici, G. Computation of mean field equilibria in economics. Math. Mod. Meth. Appl. Sci. 2010, 20, 567–588. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Liu, S.; Tembine, H.; Li, W.; Osher, S. Controlling Propagation of Epidemics via Mean-Field Control. SIAM J. Appl. Math. 2021, 81, 190–207. [Google Scholar] [CrossRef]
- Banez, R.A.; Li, L.; Yang, C.; Han, Z. Mean Field Game and Its Applications in Wireless Networks; Springer: New York, NY, USA, 2021. [Google Scholar]
- Barreiro-Gomez, J.; Tembine, H. Mean-Field-Type Games for Engineers; Taylor& Franis Group: Oxfordshire, UK, 2021. [Google Scholar]
- Guéant, O.; Lasry, J.M.; Lions, P.L. Mean field games and applications. In Paris-Princeton Lectures on Mathematical Finance; Springer: Berlin/Heidelberg, Germany, 2011; pp. 205–266. [Google Scholar]
- Huang, M.; Malham, R.P.; Caines, P.E. Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 2006, 6, 221–252. [Google Scholar]
- Porretta, A. On the planning problem for a class of mean field games. C. R. Math. Acad. Sci. Paris 2013, 351, 457–462. [Google Scholar] [CrossRef]
- Porretta, A. On the planning problem for the mean field games system. Dyn. Games Appl. 2014, 4, 231–256. [Google Scholar] [CrossRef]
- Porretta, A. Weak solutions to Fokker-Planck equations and mean field games. Arch. Rat. Mech. Anal. 2015, 216, 1–62. [Google Scholar] [CrossRef]
- Gomes, D.A.; Pimentel, E.A.; Voskanyan, V. Regularity Theory for Mean-Field Game Systems; Springer: New York, NY, USA, 2016. [Google Scholar]
- Cardaliaguet, P.; Graber, P.J.; Porretta, A.; Tonon, D. Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. 2015, 22, 1287–1317. [Google Scholar] [CrossRef] [Green Version]
- Cardaliaguet, P.; Graber, P.J. Mean field games systems of first order. ESAIM Control Optim. Calc. Var. 2015, 21, 690–722. [Google Scholar] [CrossRef] [Green Version]
- Cardaliaguet, P.; Porretta, A.; Tonon, D. Sobolev regularity for the first order Hamilton-Jacobi equation. Calc. Var. Partial. Differ. Equ. 2015, 54, 3037–3065. [Google Scholar] [CrossRef] [Green Version]
- Cesaroni, A.; Cirant, M.; Dipierro, S.; Novaga, M.; Valdinoci, E. On stationary fractional mean field games. J. Math. Pures Appl. 2019, 122, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Cirant, M.; Goffi, A. On the existence and uniqueness of solutions to time-dependent fractional MFG. SIAM J. Math. Anal. 2019, 51, 913–954. [Google Scholar] [CrossRef]
- Ersland, O.; Jakobsen, E.R. On fractional and nonlocal parabolic mean field games in the whole space. J. Differ. Equ. 2021, 301, 428–470. [Google Scholar] [CrossRef]
- Cardaliaguet, P.; Porretta, A. An Introduction to Mean Field Game Theory. In Mean Field Games; Springer: Berlin, Germany, 2020; pp. 1–158. [Google Scholar]
- Ferreira, R.; Gomes, D. Existence of weak solutions to stationary mean-field games through variational inequalities. SIAM J. Math. Anal. 2018, 50, 5969–6006. [Google Scholar] [CrossRef]
- Gomes, D.A.; Patrizi, S.; Voskanyan, V. On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. 2014, 99, 49–79. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, D.M. Small strong solutions for time-dependent mean field games with local coupling. C. R. Math. Acad. Sci. Paris 2016, 354, 589–594. [Google Scholar] [CrossRef]
- Ambrose, D.M. Strong solutions for time-dependent mean field games with non-separable Hamiltonians. J. Math. Pures Appl. 2018, 113, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Ambrose, D.M. Existence theory for non-separable mean field games in Sobolev spaces. Indiana U. Math. J. 2022, 71, 611–647. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Zou, W.; Liu, Q. Strong Solution for Fractional Mean Field Games with Non-Separable Hamiltonians. Fractal Fract. 2022, 6, 362. https://doi.org/10.3390/fractalfract6070362
Ye H, Zou W, Liu Q. Strong Solution for Fractional Mean Field Games with Non-Separable Hamiltonians. Fractal and Fractional. 2022; 6(7):362. https://doi.org/10.3390/fractalfract6070362
Chicago/Turabian StyleYe, Hailong, Wenzhong Zou, and Qiang Liu. 2022. "Strong Solution for Fractional Mean Field Games with Non-Separable Hamiltonians" Fractal and Fractional 6, no. 7: 362. https://doi.org/10.3390/fractalfract6070362
APA StyleYe, H., Zou, W., & Liu, Q. (2022). Strong Solution for Fractional Mean Field Games with Non-Separable Hamiltonians. Fractal and Fractional, 6(7), 362. https://doi.org/10.3390/fractalfract6070362