Coefficient Estimates for the Functions with Respect to Symmetric Conjugate Points Connected with the Combination Binomial Series and Babalola Operator and Lucas Polynomials
Abstract
:1. Introduction
- Putting and we obtain the Lucas polynomials ;
- Putting and we attain the Pell–Lucas polynomials ;
- Putting and we attain the Jacobsthal–Lucas polynomials ;
- Putting and we attain the Fermat–Lucas polynomials ;
- Putting and we have the Chebyshev polynomials of the first kind.
2. Coefficient Bounds for the Function Class
3. Fekete–Szego Problem for the Function Class
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bulboaca, T. Differential Subordinations and Superordinations. In Recent Results; House of Scientific Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Horadam, A.F.; Mahon, J.M. Pell and Pell-dLucas polynomials. Fibonacci Quart. 1985, 23, 7–20. [Google Scholar]
- Horzum, T.; Kocer, E.G. On some properties of Horadam polynomials. Int. Math. Forum 2009, 4, 1243–1252. [Google Scholar]
- Lupas, A. A guide of Fibonacci and Lucas polynomials. Octogon Math. Mag. 1999, 7, 3–12. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class Σ. Bol. Soc. Mat. Mex. 2019, 25, 567–575. [Google Scholar] [CrossRef]
- Lupas, A.A.; El-Deeb, S.M. Subclasses of bi-univalent functions connected with integral operator based upon Lucas polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983; Volume 259. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Can. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications; Mazhar, S.M., Hamoui, A., Faour, N.S., Eds.; Pergamon Press: Oxford, UK, 1988. [Google Scholar]
- El-Deeb, S.M. Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function. Abstract Appl. Analy. 2020, 2020, 8368951. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboaca, T.; El-Matary, B.M. Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- El-Ashwah, R.M.; Thomas, D.K. Some subclasses of close-to-convex functions. J. Ramanujan Math. Soc. 1987, 2, 85–100. [Google Scholar]
- Ping, L.C.; Janteng, A. Subclass of starlike functions with respect to symmetric conjugate points. Int. J. Algebra 2011, 5, 755–762. [Google Scholar]
- Fekete, M.; Szego, G. Eine Bemerkung uber ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, S.M.; Alb Lupaş, A. Coefficient Estimates for the Functions with Respect to Symmetric Conjugate Points Connected with the Combination Binomial Series and Babalola Operator and Lucas Polynomials. Fractal Fract. 2022, 6, 360. https://doi.org/10.3390/fractalfract6070360
El-Deeb SM, Alb Lupaş A. Coefficient Estimates for the Functions with Respect to Symmetric Conjugate Points Connected with the Combination Binomial Series and Babalola Operator and Lucas Polynomials. Fractal and Fractional. 2022; 6(7):360. https://doi.org/10.3390/fractalfract6070360
Chicago/Turabian StyleEl-Deeb, Sheza M., and Alina Alb Lupaş. 2022. "Coefficient Estimates for the Functions with Respect to Symmetric Conjugate Points Connected with the Combination Binomial Series and Babalola Operator and Lucas Polynomials" Fractal and Fractional 6, no. 7: 360. https://doi.org/10.3390/fractalfract6070360
APA StyleEl-Deeb, S. M., & Alb Lupaş, A. (2022). Coefficient Estimates for the Functions with Respect to Symmetric Conjugate Points Connected with the Combination Binomial Series and Babalola Operator and Lucas Polynomials. Fractal and Fractional, 6(7), 360. https://doi.org/10.3390/fractalfract6070360