Radially Symmetric Solution for Fractional Laplacian Systems with Different Negative Powers
Abstract
:1. Introduction
2. Fractional Laplacian System with Different Negative Powers
3. Hénon Type Fractional Laplacian System with Different Negative Powers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davila, J.; Wang, K.; Wei, J.C. Qualitative analysis of rupture solutons for a MEMS problem, Ann. Inst. Henri Poincare Anal. Non Lineaire 2016, 33, 221–242. [Google Scholar]
- Jiang, H.Q.; Ni, W.M. On steady states of van der Waals force driven thin film equations. Eur. J. Appl. Math. 2007, 18, 153–180. [Google Scholar] [CrossRef] [Green Version]
- Laugesen, R.S.; Pugh, M.C. Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. Anal. 2000, 154, 3–51. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, M.; Valdinoci, E. Pointwise estimates and monotonicity formulas without maximum principle. J. Convex Anal. 2013, 20, 199–220. [Google Scholar]
- Meadows, A. Stable and singular solutions of the equation Δu = . Indiana Univ. Math. J. 2004, 53, 1681–1703. [Google Scholar] [CrossRef]
- Xu, X. Uniqueness theorem for integral equations and its application. J. Funct. Anal. 2007, 247, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Ma, L. Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation. Comptes Rendus Math. 2010, 348, 993–996. [Google Scholar] [CrossRef]
- Caffarelli, L.; Vasseur, L. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 2010, 171, 1903–1930. [Google Scholar] [CrossRef] [Green Version]
- Longhi, S. Fractional Schrödinger equation in optics. Opt. Lett. 2015, 40, 1117–1120. [Google Scholar] [CrossRef]
- Applebaum, D. Lévy Processes, Stochastic Calculus, 2nd ed.; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2009; Volume 116. [Google Scholar]
- Cabré, X.; Tan, J. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 2010, 224, 2052–2093. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, L. Regilarity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 2007, 60, 67–112. [Google Scholar] [CrossRef]
- Caffarelli, L.; Silvestre, L. Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 2009, 62, 597–638. [Google Scholar] [CrossRef] [Green Version]
- Frank, R.L.; Lenzmann, E.; Silvestre, L. Uniqueness of radial solutions for the fractional Laplacian. Comm. Pure Appl. Math. 2016, 69, 1671–1726. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Li, Y.Y.; Xiong, J. On a fractional Nirenberg problem, part I: Blow up analysis and com-pactness of solutions. J. Eur. Math. Soc. (JEMS) 2014, 16, 1111–1171. [Google Scholar] [CrossRef] [Green Version]
- Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Comm. Partial. Differ. Equ. 2007, 32, 1245–1260. [Google Scholar] [CrossRef] [Green Version]
- Brandle, C.; Colorado, E.; de Pablo, A.; Sanchez, U. A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. Math. 2013, 143, 39–71. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhu, J. Indefinite fractional elliptic problem and Liouville theorems. J. Differ. Equ. 2016, 260, 4758–4785. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, W. A Liouville type theorem for poly-harmonic Dirichlet problem in a half space. Adv. Math. 2012, 229, 2835–2867. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Fang, Y.; Yang, R. Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 2015, 274, 167–198. [Google Scholar] [CrossRef]
- Tan, J. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial. Differ. Equ. 2011, 42, 21–41. [Google Scholar] [CrossRef]
- Li, C.; Ma, L. Uniqueness of positive bound states to Schrödinger systems with critical exponents. SIAM J. Math. Anal. 2008, 40, 1049–1057. [Google Scholar] [CrossRef]
- Chen, W.; Li, C.; Li, G. Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions. Calc. Var. Partial. Differ. Equ. 2017, 56, 29. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, C.; Li, Y. A direct method of moving planes for fractional Laplacian. Adv. Math. 2017, 308, 404–437. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, C. Maximum principle for the fractional p-Laplacian and symmetry of solutions. Adv. Math. 2018, 335, 735–758. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Ma, L. Radial symmetry results for fractional Laplacian system. Nonlinear Anal. 2016, 146, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Y.; Ma, P. The Fractional Laplacian; World Scientific: Singapore, 2020. [Google Scholar] [CrossRef]
- Wang, G.; Ren, X.; Bai, Z.; Hou, W. Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation. Appl. Math. Lett. 2019, 96, 131–137. [Google Scholar] [CrossRef]
- Zhang, L.; Nie, X. A direct method of moving planes for the Logarithmic Laplacian. Appl. Math. Lett. 2021, 118, 107141. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, L.; Agarwal, R.P.; Wang, G. Radial symmetry for a generalized nonlinear fractional p-Laplacian problem. Nonlinear Anal. Model. Control 2021, 26, 349–C362. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, W.; Ahmad, B.; Wang, G. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional p-Laplacian. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 3851–3863. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, W. Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity. Appl. Math. Lett. 2020, 102, 106149. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Ren, G.W.X. Radial symmetry of solution for fractional p-Laplacian system. Nonlinear Anal. 2020, 196, 111801. [Google Scholar] [CrossRef]
- Wang, G.; Ren, X. Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems. Appl. Math. Lett. 2020, 110, 106560. [Google Scholar] [CrossRef]
- Cai, M.; Ma, L. Moving planes for nonlinear fractional Laplacian equation with negative powers. Disc. Cont. Dyn. Sys.-Ser. A 2018, 38, 4603–4615. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Qi, S. Direct methods on fractional equations. Disc. Cont. Dyn. Sys.-Ser. A 2019, 39, 1269–1310. [Google Scholar] [CrossRef] [Green Version]
- Jarohs, S.; Weth, T. Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Ann. Mat. Pura Appl. 2016, 195, 273–291. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Ahmad, B.; Wang, G.; Zhang, L. Radially Symmetric Solution for Fractional Laplacian Systems with Different Negative Powers. Fractal Fract. 2022, 6, 352. https://doi.org/10.3390/fractalfract6070352
Xu H, Ahmad B, Wang G, Zhang L. Radially Symmetric Solution for Fractional Laplacian Systems with Different Negative Powers. Fractal and Fractional. 2022; 6(7):352. https://doi.org/10.3390/fractalfract6070352
Chicago/Turabian StyleXu, Haiyong, Bashir Ahmad, Guotao Wang, and Lihong Zhang. 2022. "Radially Symmetric Solution for Fractional Laplacian Systems with Different Negative Powers" Fractal and Fractional 6, no. 7: 352. https://doi.org/10.3390/fractalfract6070352
APA StyleXu, H., Ahmad, B., Wang, G., & Zhang, L. (2022). Radially Symmetric Solution for Fractional Laplacian Systems with Different Negative Powers. Fractal and Fractional, 6(7), 352. https://doi.org/10.3390/fractalfract6070352