Effect of Heterogeneity on the Extension of Ubiquitiformal Cracks in Rock Materials
Abstract
:1. Introduction
2. Brazilian Splitting Test of Slate and Granite Specimens
2.1. Test Equipment and Specimen Preparation
2.2. Calculation of the Ubiquitiformal Complexity of Slate and Granite Specimen Sections
2.3. Ubiquitiformal Fracture Energy versus Conventional Fracture Energy
3. Numerical Simulation of Brazilian Splitting
3.1. Cohesion Model
3.2. Weibull Distribution of Elastic Modulus of Rock Materials
3.3. Establishment of Numerical Model
3.4. Results
3.4.1. Ideal Homogeneous Model
3.4.2. Heterogeneous Model
4. Discussion
4.1. Ubiquitiformal Complexity
4.2. Fracture Energy
4.3. Heterogeneity Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J. Fractal character of fracture surfaces of metals. Nature 1984, 308, 721–722. [Google Scholar] [CrossRef]
- Panigrahy, C.; Seal, A.; Mahato, N.K. Quantitative texture measurement of gray-scale images: Fractal dimension using an improved differential box counting method. Measurement 2019, 147, 106859. [Google Scholar] [CrossRef]
- Meng, T.; Xie, J.; Li, X.M.; Ma, J.W.; Yue, Y. Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment. Energy 2020, 203, 117838. [Google Scholar]
- Yang, A.; Li, S.; Lin, H.; Jin, D. Edge extraction of mineralogical phase based on fractal theory. Chaos Solitons Fractals 2018, 117, 215–221. [Google Scholar]
- Zhang, K.; Liu, X.; Liu, W.; Zhang, S. Influence of weak inclusions on the fracturing and fractal behavior of a jointed rock mass containing an opening: Experimental and numerical studies. Comput. Geotech. 2021, 132, 104011. [Google Scholar] [CrossRef]
- Cai, W.; Cen, G.; Wang, H. Fracture Surface Fractal Characteristics of Alkali-Slag Concrete under Freeze-Thaw Cycles. Adv. Mater. Sci. Eng. 2017, 2017, 1689893. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Zhang, J.; Chen, Y. Fractal dimension of scattering equivalent section of aerosol and its calibration mechanism. Chin. Opt. Lett. 2009, 7, 857–860. [Google Scholar]
- Hao, L.; Tang, J.; Wang, Q.; Tao, H.; Ma, X.; Ma, D.; Ji, H. Fractal characteristics of tight sandstone reservoirs: A case from the Upper Triassic Yanchang Formation, Ordos Basin, China. J. Pet. Sci. Eng. 2017, 158, 243–252. [Google Scholar] [CrossRef]
- Dang, N.; Tao, J.; Zeng, Q.; Zhao, W. May the Piezoresistivity of GNP-Modified Cement Mortar Be Related to Its Fractal Structure? Fractal Fract. 2021, 5, 148. [Google Scholar] [CrossRef]
- He, W.; Hayatdavoudi, A.; Shi, H.; Sawant, K.; Huang, P. A Preliminary Fractal Interpretation of Effects of Grain Size and Grain Shape on Rock Strength. Rock Mech. Rock Eng. 2019, 52, 1745–1765. [Google Scholar] [CrossRef]
- Niu, D.; Huang, D.; Zheng, H.; Su, L.; Fu, Q.; Luo, D. Experimental Study on Mechanical Properties and Fractal Dimension of Pore Structure of Basalt–Polypropylene Fiber-Reinforced Concrete. Appl. Sci. 2019, 9, 1602. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.-L.; Xu, W.-Y.; Meng, Q.-X.; Wang, R.-B. Investigation on jointed rock strength based on fractal theory. J. Cent. South Univ. 2017, 24, 1619–1626. [Google Scholar] [CrossRef]
- Xiao, J.; Long, X.; Li, L.; Jiang, H.; Zhang, Y.; Qu, W. Study on the Influence of Three Factors on Mass Loss and Surface Fractal Dimension of Concrete in Sulfuric Acid Environments. Fractal Fract. 2021, 5, 146. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Yeung, M.-C.R. A Fractal and Numerical Simulation Coupled Study of Fracture Network during Coal Mining Excavation. J. Appl. Math. 2014, 2014, 158194. [Google Scholar] [CrossRef] [Green Version]
- Giri, A.; Tarafdar, S.; Gouze, P.; Dutta, T. Fractal pore structure of sedimentary rocks: Simulation in 2-d using a relaxed bidisperse ballistic deposition model. J. Appl. Geophys. 2012, 87, 40–45. [Google Scholar] [CrossRef]
- Wu, D.; Hu, Y.; Fan, X. Visual simulation for granular rocks crush in virtual environment based on fractal geometry. Simul. Model. Pract. Theory 2009, 17, 1254–1266. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, Z.; Murong, Y.; Wang, L.; Lei, B.; Chu, L.; Jiang, H.; Qu, W. Effect of Chemical Composition of Fine Aggregate on the Frictional Behavior of Concrete–Soil Interface under Sulfuric Acid Environment. Fractal Fract. 2021, 6, 22. [Google Scholar] [CrossRef]
- Wang, L.; Lu, X.; Liu, L.; Xiao, J.; Zhang, G.; Guo, F.; Li, L. Influence of MgO on the Hydration and Shrinkage Behavior of Low Heat Portland Cement-Based Materials via Pore Structural and Fractal Analysis. Fractal Fract. 2022, 6, 40. [Google Scholar] [CrossRef]
- Ou, Z.-C.; Li, G.-Y.; Duan, Z.-P.; Huang, F.-L. Ubiquitiform in Applied Mechanics. J. Theor. Appl. Mech. 2014, 52, 37–46. [Google Scholar]
- Li, G.-Y.; Ou, Z.-C.; Xie, R.; Duan, Z.-P.; Huang, F.-L. A Ubiquitiformal One-Dimensional Steady-State Conduction Model for a Cellular Material Rod. Int. J. Thermophys. 2016, 37, 41. [Google Scholar] [CrossRef]
- Ou, Z.-C.; Yang, M.; Li, G.-Y.; Duan, Z.-P.; Huang, F.-L. Ubiquitiformal fracture energy. J. Theor. Appl. Mech. 2017, 55, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Y.; Gao, W.X.; Song, X.L. Numerical simulation on the extension of a ubiquitiformal crack of rock materials under dynamic loading. Vib. Shock 2018, 37, 88–91+103. [Google Scholar]
- Zhang, N. Characterization of Crack Propagation Fracture Parameters Based on the Ubiquitiform Theory. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2019. [Google Scholar]
- You, M.-Q.; Zou, Y.-F. Discussion on heterogeneity of rock material and size effect on specimen strength. Chin. J. Rock Mech. Eng. 2000, 19, 391–395. [Google Scholar]
- Li, M.; Guo, P.; Stolle, D.F.; Liang, L.; Shi, Y. Modeling hydraulic fracture in heterogeneous rock materials using permeability-based hydraulic fracture model. Undergr. Space 2020, 5, 167–183. [Google Scholar] [CrossRef]
- Li, S.-C.; Li, G.-Y. Effect of heterogeneity on mechanical and acoustic emission characteristics of rock specimen. J. Cent. South Univ. Technol. 2010, 17, 1119–1124. [Google Scholar] [CrossRef]
- Wang, J.-T.; Zuo, J.-P. Numerical simulation on effect of heterogeneity on mode I fracture characteristics of rock. J. Cent. South Univ. 2020, 27, 3063–3077. [Google Scholar] [CrossRef]
- Fu, B.; Li, Y.; Tang, C.; Lin, Z. Failure of Rock Slope with Heterogeneous Locked Patches: Insights from Numerical Modelling. Appl. Sci. 2021, 11, 8585. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, W.; Xia, K. Numerical study on tensile failures of heterogeneous rocks. J. Rock Mech. Geotech. Eng. 2020, 12, 50–58. [Google Scholar] [CrossRef]
- Lan, H.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. Solid Earth 2010, 115, B01202. [Google Scholar] [CrossRef]
- Liao, Z.; Zhu, J.; Tang, C. Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests. Int. J. Rock Mech. Min. Sci. 2019, 115, 21–32. [Google Scholar] [CrossRef]
- Ju, Y.; Ou, Z.; Duan, Z.; Huang, F. The Ubiquitiformal Characterization of the Mesostructures of Polymer-Bonded Explosives. Materials 2019, 12, 3763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Ou, Z.-C.; Duan, Z.-P.; Huang, F.-L. Research on one-dimensional ubiquitiformal constitutive relations for a bimaterial bar. J. Theor. Appl. Mech. 2019, 57, 291–301. [Google Scholar] [CrossRef]
- He, M.; Li, N.; Zhu, C.; Chen, Y.; Wu, H. Experimental investigation and damage modeling of salt rock subjected to fatigue loading. Int. J. Rock Mech. Min. Sci. 2019, 114, 17–23. [Google Scholar] [CrossRef]
- Ou, Z.-C.; Li, G.-Y.; Duan, Z.-P.; Huang, F.-L. A stereological ubiquitiformal softening model for concrete. J. Theor. Appl. Mech. 2019, 57, 27–35. [Google Scholar] [CrossRef]
- Shang, S.; Cao, X.; Liu, Z.; Shi, J. Analysis of Normal Elastic Contact Stiffness of Rough Surfaces Based on Ubiquitiform Theory. J. Tribol. 2019, 141, 111401. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Wu, L.Z. Determination of elastic modulus, tensile strength and fracture toughness of brittle rock with platform Brazilian disc specimens–Part II: Test results. Chin. J. Rock Mech. Eng. 2004, 2, 199–204. [Google Scholar]
- Grodner, M.W.; Clarke, S.M.; Burley, S.D.; Leslie, A.G.; Haslam, R. Combining topology and fractal dimension of fracture networks to characterise structural domains in thrusted limestones. J. Struct. Geol. 2021, 153, 104468. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, D.-M. Estimation of fracture toughness, driving force, and fracture energy for fractal cracks using the method of imaginary smooth crack. Eng. Fract. Mech. 2010, 77, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Emami, S.-M.; Mousavi, S.-F.; Hosseini, K.; Fouladfar, H.; Mohammadian, M. Comparison of different turbulence models in predicting cohesive fluid mud gravity current propagation. Int. J. Sediment Res. 2020, 35, 504–515. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, Z.; Wang, M.; Wang, F.; Luo, C.; Wan, D. Study of the failure properties and tensile strength of rock-mortar interface transition zone using bi-material Brazilian discs. Constr. Build. Mater. 2020, 236, 117551. [Google Scholar] [CrossRef]
- Saksala, T.; Hokka, M.; Kuokkala, V.-T.; Mäkinen, J. Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite. Int. J. Rock Mech. Min. Sci. 2013, 59, 128–138. [Google Scholar] [CrossRef]
- Li, J.-Y.; Ou, Z.-C.; Tong, Y.; Duan, Z.-P.; Huang, F.-L. A statistical model for ubiquitiformal crack extension in quasi-brittle materials. Acta Mech. 2017, 228, 2725–2732. [Google Scholar] [CrossRef]
- Dong, Y.X. Study on the Ubiquitiformal Fracture Characteristics of Brittle Metals. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2019. [Google Scholar]
- Muralidhara, S.; Prasad, B.R.; Singh, R. Size independent fracture energy from fracture energy release rate in plain concrete beams. Eng. Fract. Mech. 2013, 98, 284–295. [Google Scholar] [CrossRef]
- Yu, K.; Yu, J.; Lu, Z. Average Fracture Energy for Crack Propagation in Postfire Concrete. Adv. Mater. Sci. Eng. 2013, 2013, 143208. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Y.; Ou, Z.C.; Yu, B.; Huang, F.L. Fractal cohesion model of concrete under tensile load. Chin. J. Solid Mech. 2012, 33, 251–257. [Google Scholar]
- Cao, H.L. Based on the Ubiquitiform Theory Method to the Contact Stiffness of Mechanical Joint Surface is Studied. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2018. [Google Scholar]
- Alam, S.Y.; Zhu, R.; Loukili, A. A new way to analyse the size effect in quasi-brittle materials by scaling the heterogeneity size. Eng. Fract. Mech. 2020, 225, 106864. [Google Scholar] [CrossRef]
- Del Giudice, M. Addendum to: Heterogeneity Coefficients for Mahalanobis’ D as a Multivariate Effect Size. Multivar. Behav. Res. 2018, 53, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Olsson-Collentine, A.; Wicherts, J.M.; van Assen, M.A.L.M. Heterogeneity in direct replications in psychology and its association with effect size. Psychol. Bull. 2020, 146, 922–940. [Google Scholar] [CrossRef]
Specimen | ft (MPa) | E (GPa) | δmin (μm) | D | G (N/mm) | KIC (MPa·mm1/2) | Gc (N/mm) | Guf (N/mm) |
---|---|---|---|---|---|---|---|---|
S-1 | 4.929 | 9.858 | 1.4 | 1.55 | 0.6661 | 0.1115 | 0.1261 | 0.2086 |
S-2 | 7.140 | 10.710 | 1.60 | 1.1893 | 0.1615 | 0.2437 | 0.2206 | |
S-3 | 6.085 | 9.128 | 1.56 | 0.9549 | 0.1377 | 0.2077 | 0.2693 | |
S-4 | 4.652 | 9.304 | 1.57 | 0.7861 | 0.1053 | 0.1190 | 0.2277 | |
S-5 | 5.432 | 10.864 | 1.58 | 0.9993 | 0.1229 | 0.1390 | 0.2524 | |
S-6 | 5.116 | 8.185 | 1.54 | 0.7049 | 0.1157 | 0.1800 | 0.3080 |
Specimen | ft (MPa) | E (GPa) | δmin (μm) | D | G (N/mm) | KIC (MPa·mm1/2) | Gc (N/mm) | Guf (N/mm) |
---|---|---|---|---|---|---|---|---|
G-1 | 10.519 | 15.779 | 4.7 | 1.61 | 2.6287 | 0.2380 | 0.3590 | 0.2744 |
G-2 | 8.553 | 13.685 | 1.58 | 2.2706 | 0.1935 | 0.2736 | 0.3448 | |
G-3 | 9.792 | 14.687 | 1.62 | 2.5781 | 0.2215 | 0.3342 | 0.2375 | |
G-4 | 9.238 | 14.781 | 1.61 | 2.8987 | 0.2090 | 0.3956 | 0.3026 | |
G-5 | 8.319 | 13.310 | 1.60 | 2.5606 | 0.1882 | 0.2662 | 0.3029 | |
G-6 | 7.989 | 13.583 | 1.61 | 2.5081 | 0.1807 | 0.2406 | 0.2618 |
E/GPa | μ | T/MPa | di/mm | df/mm | GIC/(N/mm) |
---|---|---|---|---|---|
20 | 0.3 | 10.52 | 0.015 | 0.3 | 1.578 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Cao, X.; Han, T.; Li, P.; Shi, J. Effect of Heterogeneity on the Extension of Ubiquitiformal Cracks in Rock Materials. Fractal Fract. 2022, 6, 317. https://doi.org/10.3390/fractalfract6060317
Yang B, Cao X, Han T, Li P, Shi J. Effect of Heterogeneity on the Extension of Ubiquitiformal Cracks in Rock Materials. Fractal and Fractional. 2022; 6(6):317. https://doi.org/10.3390/fractalfract6060317
Chicago/Turabian StyleYang, Beibei, Xiaoshan Cao, Tielin Han, Panfeng Li, and Junping Shi. 2022. "Effect of Heterogeneity on the Extension of Ubiquitiformal Cracks in Rock Materials" Fractal and Fractional 6, no. 6: 317. https://doi.org/10.3390/fractalfract6060317
APA StyleYang, B., Cao, X., Han, T., Li, P., & Shi, J. (2022). Effect of Heterogeneity on the Extension of Ubiquitiformal Cracks in Rock Materials. Fractal and Fractional, 6(6), 317. https://doi.org/10.3390/fractalfract6060317