Bazilevič Functions of Complex Order with Respect to Symmetric Points
Abstract
:1. Introduction
- 1.
- Setting , , , and , we get
- 2.
- If we let p = λ = 1, t = , α = 0, = 1, and , the class reduces to
2. Prelimanries
3. Main Results
Applications to a Petal-Shaped Domain
4. Coefficient Estimates for Functions in and
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breaz, D.; Karthikeyan, K.R.; Senguttuvan, A. Multivalent prestarlike functionswith respect to symmetric points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
- Ahuja, O.; Çetinkaya, A.; Jain, N.K. Mittag-leffler operator connected with certain subclasses of Bazilevič functions. J. Math. 2021, 2021, 2065034. [Google Scholar]
- Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Darus, M. Subordination inequalities of a new Salagean-difference operator. Int. J. Math. Comput. Sci. 2019, 14, 573–582. [Google Scholar]
- Ibrahim, R.W. On a Janowski formula based on a generalized differential operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 1320–1328. [Google Scholar]
- Ibrahim, R.W. Geometric process solving a class of analytic functions using q-convolution differential operator. J. Taibah Univ. Sci. 2020, 14, 670–677. [Google Scholar] [CrossRef]
- Sălăgean, G.Ş. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981); Lecture Notes in Mathematics; Springer: Berlin, Germany, 1981; Volume 1013, pp. 362–372. [Google Scholar]
- Selvaraj, C.; Karthikeyan, K.R. Differential sandwich theorems for certain subclasses of analytic functions. Math. Commun. 2008, 13, 311–319. [Google Scholar]
- Haji Mohd, M.; Darus, M. Fekete-Szego problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2012, 192956. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Cho, N.E. Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Math. 2021, 6, 7111–7124. [Google Scholar] [CrossRef]
- Aouf, M.K.; Bulboacă, T.; Seoudy, T.M. Subclasses of multivalent non-Bazilevič functions defined with higher order derivatives. Bull. Transilv. Univ. Braşov. Ser. III 2020, 13, 411–422. [Google Scholar] [CrossRef]
- Bazilevič, I.E. On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. 1955, 37, 471–476. [Google Scholar]
- Arif, M.; Ahmad, K.; Liu, J.-L.; Sokół, J. A new class of analytic functions associated with Sălăgean operator. J. Funct. Spaces 2019, 8, 6157394. [Google Scholar] [CrossRef] [Green Version]
- Aouf, M.K.; Seoudy, T.M. On certain class of multivalent analytic functions defined by differential subordination. Rend. Circ. Mat. Palermo 2011, 60, 191–201. [Google Scholar] [CrossRef]
- Aouf, M.K. Some families of p-valent functions with negative coefficients. Acta Math. Univ. Comenian. New Ser. 2009, 78, 121–135. [Google Scholar]
- Aouf, M.K. Certain classes of multivalent functions with negative coefficients defined by using a differential operator. J. Math. Appl. 2008, 30, 5–21. [Google Scholar]
- Wang, Z.; Gao, C.; Liao, M. On certain generalized class of non-Bazilevič functions. Acta Math. Acad. Paedagog. Nyházi. New Ser. 2005, 21, 147–154. [Google Scholar]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations. In Monographs and Textbooks in Pure and Applied Mathematics, 225; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Suffridge, T.J. Some remarks on convex maps of the unit disk. Duke Math. J. 1970, 37, 775–777. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992); International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokół, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.R.; Lakshmi, S.; Varadharajan, S.; Mohankumar, D.; Umadevi, E. Starlike functions of complex order with respect to symmetric points defined using higher order derivatives. Fractal Fract. 2022, 6, 116. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. On a class of analytic functions governed by subordination. Acta Univ. Sapientiae Math. 2019, 11, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.K.; Sokół, J. Fekete-Szegö problem for some starlike functions related to shell-like curves. Math. Slovaca 2016, 66, 135–140. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. On coefficient estimates for a certain class of starlike functions. Haceppt. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. Comptes Rendus Math. Acad. Sci. Paris 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Shakeel, A.; Kutbi, M.A. Coefficient bounds of Kamali-type starlike functions related with a limacon-shaped domain. J. Funct. Spaces 2021, 2021, 4395574. [Google Scholar] [CrossRef]
- Sivaprasad Kumar, S.; Arora, K. Starlike functions associated with a petal shaped domain. arXiv 2020, arXiv:2010.10072. [Google Scholar]
- Barukab, O.M.; Arif, M.; Abbas, M.; Khan, S.A. Sharp bounds of the coefficient results for the family of bounded turning functions associated with a petal-shaped domain. J. Funct. Spaces 2021, 2021, 5535629. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Nistor-Şerban, A.; Răducanu, D. Coefficient estimates for certain subclasses of starlike functions of complex order associated with a hyperbolic domain. Bull. Transilv. Univ. Braşov. Ser. III 2020, 13, 595–610. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Bulboacă, T. Properties of λ-pseudo-starlike functions of complex order defined by subordination. Axioms 2021, 10, 86. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Karthikeyan, K.R.; Murugusundaramoorthy, G. Bazilevič Functions of Complex Order with Respect to Symmetric Points. Fractal Fract. 2022, 6, 316. https://doi.org/10.3390/fractalfract6060316
Breaz D, Karthikeyan KR, Murugusundaramoorthy G. Bazilevič Functions of Complex Order with Respect to Symmetric Points. Fractal and Fractional. 2022; 6(6):316. https://doi.org/10.3390/fractalfract6060316
Chicago/Turabian StyleBreaz, Daniel, Kadhavoor R. Karthikeyan, and Gangadharan Murugusundaramoorthy. 2022. "Bazilevič Functions of Complex Order with Respect to Symmetric Points" Fractal and Fractional 6, no. 6: 316. https://doi.org/10.3390/fractalfract6060316
APA StyleBreaz, D., Karthikeyan, K. R., & Murugusundaramoorthy, G. (2022). Bazilevič Functions of Complex Order with Respect to Symmetric Points. Fractal and Fractional, 6(6), 316. https://doi.org/10.3390/fractalfract6060316