Average Process of Fractional Navier–Stokes Equations with Singularly Oscillating Force
Abstract
:1. Introduction
2. Preliminary
- If f(t) = K = constant, then it is easy to check that, which is beneficial in engineering applications. However, the α derivative of the Riemann–Liouville is.
- From Definition 2, it is easy to see that f only needs to be continuous, but must be differentiable in the Caputo derivative. That is to say, for the modified Riemann–Liouville derivative, the requirement for the regularity of the function f is lower.
3. Attractors for Navier–Stokes Equations
3.1. Well-Posedness for the Fractional Navier–Stokes Equations
3.2. Dynamical Processes and Attractors
4. Uniform Boundedness and Convergence of Attractors
4.1. Stokes Evolution Equation with Oscillating External Force
4.2. Uniform Boundedness of Attractors
4.3. Convergence of the Attractors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrachev, A.A.; Sarychev, A.V. Navier–Stokes equations: Controllability by means of low modes forcing. J. Math. Fluid Mech. 2005, 7, 108–152. [Google Scholar] [CrossRef] [Green Version]
- Babin, A.V.; Vishik, M.I. Attractors of Evolution Equations; North-Holland: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Ladyzhenskaya, O. Attractors for Semi-Groups and Evolution Equations; CUP Archive: Cambridge, UK, 1991. [Google Scholar]
- Sell, G.R.; You, Y. Dynamics of Evolutionary Equations; Springer: New York, NY, USA, 2002. [Google Scholar]
- Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Vishik, M.I.; Chepyzhov, V.V. Trajectory and global attractors of three-dimensional Navier–Stokes systems. Math. Notes 2002, 71, 177–193. [Google Scholar] [CrossRef]
- Chepyzhov, V.V.; Vishik, M.I. Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems. Esaim Control Optim. Calc. Var. 2002, 8, 467–487. [Google Scholar] [CrossRef]
- Chepyzhov, V.V.; Vishik, M.I. Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor. J. Dyn. Differ. Equ. 2007, 19, 655–684. [Google Scholar] [CrossRef]
- Chepyzhov, V.V.; Pata, V.; Vishik, M.I. Averaging of 2D Navier–Stokes equations with singularly oscillating forces. Nonlinearity 2011, 22, 351–370. [Google Scholar] [CrossRef]
- Ilyin, A.A. Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides. Sb. Math. 1996, 187, 77–635. [Google Scholar] [CrossRef]
- Ilyin, A.A. Global averaging of dissipative dynamical system. Rend. Acad. Naz. Scidetta XL Mem. Mat. Appl. 1998, 116, 165–191. [Google Scholar]
- Vishik, M.I.; Chepyzhov, V.V. Averaging of trajectory attractors of evolution equations with rapidly oscillating terms. Russ. Acad. Sci. Sb. Math. 2000, 192, 11–47. [Google Scholar] [CrossRef]
- Xiao, Y.M. Packing measure of the sample paths of fractional brownian motion. Trans. Am. Math. Soc. 1996, 348, 3193–3213. [Google Scholar] [CrossRef] [Green Version]
- Engheta, N. On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 1996, 44, 554–566. [Google Scholar] [CrossRef]
- Caputo, M.G. Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 1974, 56, 897–904. [Google Scholar] [CrossRef]
- Di Paola, M.; Pirrotta, A.; Valenza, A. Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results. Mech. Mater. 2011, 43, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Heibig, A.; Palade, L.I. Well posedness of a linearized fractional derivative fluid model. J. Math. Anal. Appl. 2011, 380, 188–203. [Google Scholar] [CrossRef]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.C.; Angulo-Castillo, V. Global well-posedness and asymptotic behavior for Navier–Stokes–Coriolis equations in homogeneous Besov spaces. Asymptot. Anal. 2019, 112, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Abidin, M.Z.; Chen, J. Global well-posedness for fractional Navier–Stokes equations in variable exponent Fourier-Besov-Morrey spaces. Acta Math. Sci. 2021, 41, 164–176. [Google Scholar] [CrossRef]
- Sun, X.; Liu, J.; Zhang, J. Global Well-Posedness for the Fractional Navier–Stokes-Coriolis Equations in Function Spaces Characterized by Semigroups. Preprints 2021. [Google Scholar] [CrossRef]
- Huang, A.; Huo, W. The global attractor of the 2D Boussinesq equations with fractional Laplacian in subcritical case. arXiv 2015, arXiv:1504.00716. [Google Scholar]
- Catania, D.; Morando, A.; Trebeschi, P. Global attractor for the Navier–Stokes equations with fractional deconvolution. Nonlinear Differ. Equ. Appl. NoDEA 2015, 22, 811–848. [Google Scholar] [CrossRef]
- Carvalho, P.; Planas, G. Mild solutions to the time fractional Navier–Stokes equations in Rn. J. Differ. Equ. 2015, 259, 2948–2980. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, L. On the time-fractional Navier–Stokes equations. Comput. Math. Appl. 2017, 73, 874–891. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, L.; Huang, Y. Existence and HÖlder continuity of solutions for time-fractional Navier–Stokes equations. Math. Methods Appl. Sci. 2018, 41, 7830–7838. [Google Scholar] [CrossRef]
- Jumarie, G. Modified Riemann–Liouville derivative and fractional taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Jumarie, G. An approach to differential geometry of fractional order via modified Riemann–Liouville derivative. Acta Math. Sin. Engl. Ser. 2012, 28, 1741–1768. [Google Scholar] [CrossRef]
- Jumarie, G. Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 2009, 22, 378–385. [Google Scholar] [CrossRef]
- Merdan, M. On the Solutions Fractional Riccati Differential Equation with Modified Riemann–Liouville Derivative. Int. J. Differ. Equ. 2012, 2012, 1–17. [Google Scholar] [CrossRef]
- Trif, T. Existence of solutions to initial value problems for nonlinear fractional differential equations on the semi-axis. Fract. Calc. Appl. Anal. 2013, 16, 595–612. [Google Scholar] [CrossRef]
- Kou, C.; Zhou, H.; Yan, Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. Theory Methods Appl. 2011, 74, 5975–5986. [Google Scholar] [CrossRef]
- Wong, F.H.; Yeh, C.C.; Yu, S.L.; Hong, C.H. Young’s inequality and related results on time scales. Appl. Math. Lett. 2005, 18, 983–988. [Google Scholar] [CrossRef]
- Peng, J.; Li, K. A novel characteristic of solution operator for the fractional abstract Cauchy problem. J. Math. Anal. Appl. 2012, 385, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Kloeden, P.E.; Schmalfuß, B. Nonautonomous systems, cocycle attractors and variable time-step discretization. Numer. Algorithms 1997, 14, 141–152. [Google Scholar] [CrossRef]
- Babin, A.V.; Vishik, M.I. Attractors of partial differential evolution equations and estimates of their dimension. Russ. Math. Surv. 1983, 38, 151. [Google Scholar] [CrossRef]
- Chepyzhov, V.V.; Vishik, M.I. Attractors for Equations of Mathematical Physics; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Cheng, Y.; Ma, R.; Zhao, Z. Average Process of Fractional Navier–Stokes Equations with Singularly Oscillating Force. Fractal Fract. 2022, 6, 241. https://doi.org/10.3390/fractalfract6050241
Han C, Cheng Y, Ma R, Zhao Z. Average Process of Fractional Navier–Stokes Equations with Singularly Oscillating Force. Fractal and Fractional. 2022; 6(5):241. https://doi.org/10.3390/fractalfract6050241
Chicago/Turabian StyleHan, Chunjiao, Yi Cheng, Ranzhuo Ma, and Zhenhua Zhao. 2022. "Average Process of Fractional Navier–Stokes Equations with Singularly Oscillating Force" Fractal and Fractional 6, no. 5: 241. https://doi.org/10.3390/fractalfract6050241
APA StyleHan, C., Cheng, Y., Ma, R., & Zhao, Z. (2022). Average Process of Fractional Navier–Stokes Equations with Singularly Oscillating Force. Fractal and Fractional, 6(5), 241. https://doi.org/10.3390/fractalfract6050241