A Numerical Approach to Solve the q-Fractional Boundary Value Problems
Abstract
:1. Introduction
2. Preliminaries
3. The Difference Method and Truncation Error Estimation
4. The Stability and the Error Analysis
5. Numerical Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baleanu, D. New applications of fractional variational principles. Rep. Math. Phys. 2008, 61, 199–206. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S. A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci. Numer. Simul. 2021, 100, 105844. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Mohammadi, H. A mathematical analysis of a system of Caputo–Fabrizio fractional differential equations for the anthrax disease model in animals. Adv. Differ. Equ. 2020, 2020, 481. [Google Scholar] [CrossRef]
- Mohammadi, H.; Rezapour, S.; Etemad, S. On a hybrid fractional Caputo–Hadamard boundary value problem with hybrid Hadamard integral boundary value conditions. Adv. Differ. Equ. 2020, 2020, 455. [Google Scholar] [CrossRef]
- Mohammadi, H.; Rezapour, S.; Etemad, S.; Baleanu, D. Two sequential fractional hybrid differential inclusions. Adv. Differ. Equ. 2020, 2020, 385. [Google Scholar] [CrossRef]
- Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etemad, S.; Rezapour, S. On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Adv. Differ. Equ. 2021, 2021, 201. [Google Scholar] [CrossRef]
- Baleanu, D.; Jarad, F. Difference discrete variational principles. In Mathematical Analysis and Applications; American Institute of Physics: Melville, NY, USA, 2006. [Google Scholar]
- Kelley, W.G.; Peterson, A. Difference Equations; Academic Press: Boston, MA, USA, 1991. [Google Scholar]
- Bohner, M.; Peterson, A.C. Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Hilger, S. Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 64–72. [Google Scholar] [CrossRef]
- Gul, S.; Noor, M.A.; Baleanu, D. Novel higher order iterative schemes based on the q-Calculus for solving nonlinear equations. AMIS. Math. 2022, 7, 3524–3553. [Google Scholar]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Springer: New York, NY, USA, 2003. [Google Scholar]
- Georgiev, S.G. Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales; Springer: New York, NY, USA, 2018. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Butt, R.I.; Abdeljawad, T.; Alqudah, M.A.; Rehman, M. Ulam stability of caputo q-fractional delay difference equatioin: q-fractional Gronwall inequality approach. J. Inequal. Appl. 2019, 305. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Alzabut, J.; Baleanu, D. A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems. J. Inequal. Appl. 2016, 2016, 240. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Stability of q-fractional non-autonomous systems. Nonlinear Anal. Real World Appl. 2013, 14, 780–784. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Benli, B.; Baleanu, D. A generalized q-Mittag-Leffler function by q-Caputo fractional linear equations. Abstr. Appl. Anal. 2012, 2012, 546062. [Google Scholar] [CrossRef]
- Ferreira, R. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70, 1–10. [Google Scholar] [CrossRef]
- El-Shahed, M.; Al-Askar, F. Positive solutions for boundary value problem of nonlinear fractional q-difference equation. ISRN Math. Anal. 2011, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Zhang, S. Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-difference equation. Appl. Math. Comput. 2012, 40, 277–288. [Google Scholar]
- Liu, Y. Existence of positive solutions for boundary value problem of nonlinear fractional q-difference equation. Appl. Math. 2013, 4, 1450–1454. [Google Scholar]
- Abdeljawad, T.; Benli, B. A quantum generalized Mittag-Leffler function via Caputo q-fractional equations. arXiv 2011, arXiv:1102.1585. [Google Scholar]
- Abdeljawad, T.; Benli, D. Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. 2011, 16, 4682–4688. [Google Scholar] [CrossRef] [Green Version]
- Salahshour, S.; Ahmadian, A.; Chan, C.S. Successive approximation method for Caputo q-fractional IVPs. Commun. Nonlinear Sci. 2015, 24, 153–158. [Google Scholar] [CrossRef]
- Zhang, T.; Tong, C. A difference method for solving the nonlinear q-fractional differential equations on time scales. Fractals 2020, 28, 2050121. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. New applications of the variational iteration method—From differential equations to q-fractional difference equations. Adv. Differ. Equ.-Ny. 2013, 1, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. On q-definite integral. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Fractional q-calculus on a time scales. J. Nonlinear Math. Phys. 2007, 14, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: Cambridge, MA, USA, 1970. [Google Scholar]
0.0000 | −1.0000 | −1.0201 | 0.0201 |
−0.9999 | −1.0204 | 0.0205 | |
−0.9997 | −1.0206 | 0.0209 | |
−0.9992 | −1.0207 | 0.0214 | |
−0.9978 | −1.0201 | 0.0222 | |
−0.9940 | −1.0172 | 0.0232 | |
−0.9832 | −1.0071 | 0.0239 | |
−0.9533 | −0.9757 | 0.0224 | |
−0.8704 | −0.8844 | 0.0140 | |
−0.6400 | −0.6317 | 0.0083 |
0.0000 | −1.0000 | −1.0097 | 0.0097 |
−0.9980 | −1.0078 | 0.0097 | |
−0.9961 | −1.0058 | 0.0097 | |
−0.9921 | −1.0019 | 0.0098 | |
−0.9841 | −0.9940 | 0.0098 | |
−0.9678 | −0.9777 | 0.0099 | |
−0.9336 | −0.9433 | 0.0097 | |
−0.8594 | −0.8677 | 0.0083 | |
−0.6875 | −0.6896 | 0.0021 | |
−0.2500 | −0.2379 | 0.0121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Y.; Zhang, T. A Numerical Approach to Solve the q-Fractional Boundary Value Problems. Fractal Fract. 2022, 6, 200. https://doi.org/10.3390/fractalfract6040200
Sheng Y, Zhang T. A Numerical Approach to Solve the q-Fractional Boundary Value Problems. Fractal and Fractional. 2022; 6(4):200. https://doi.org/10.3390/fractalfract6040200
Chicago/Turabian StyleSheng, Ying, and Tie Zhang. 2022. "A Numerical Approach to Solve the q-Fractional Boundary Value Problems" Fractal and Fractional 6, no. 4: 200. https://doi.org/10.3390/fractalfract6040200
APA StyleSheng, Y., & Zhang, T. (2022). A Numerical Approach to Solve the q-Fractional Boundary Value Problems. Fractal and Fractional, 6(4), 200. https://doi.org/10.3390/fractalfract6040200